期刊文献+

线性随机时滞微分方程裂步Milstein方法的收敛性(英文) 被引量:1

Convergence of split-step Milstein method for linear stochastic delay differential equations
下载PDF
导出
摘要 给出一个新的求解线性随机时滞微分方程的显式分裂步长Milstein格式.运用ItoTaylor展开式证明该格式相对于已有的求解随机时滞微分方程的分裂步长方法而言具有更好的收敛性.数值实验验证了理论分析的正确性. A new explicit split-step Milstein method for solving linear Ito stochastic differential equations (SDEs) with a constant time delay is introduced. The Ito-Taylor expansion is employed to prove the strong convergence, which inproves the convergence results of known split-step methods for stochastic delay differential equations (SDDEs). Numerical experiments confirm the theoretical results.
出处 《应用数学与计算数学学报》 2012年第4期456-464,共9页 Communication on Applied Mathematics and Computation
基金 supported by the National Natural Science Foundation of China(10901106) the Natural Science Foundation of Shanghai Municipality,China(09ZR1423200) the Innovation Program of Shanghai Municipal Education Commission(09YZ150) the E-Institutes of Shanghai Municipal Education Commission(E03004) the Shanghai Leading Academic Discipline Project(S30405)
关键词 随机时滞微分方程 Milstein格式 分裂步长 强收敛 stochastic delay differential equation Milstein scheme split-step strong convergence
  • 相关文献

参考文献2

  • 1Kloeden P E, Shardlow T. The Milstein scheme for stochastic delay differential equations without using anticipative calculus [J]. Stoch. Anal. Appl., 2012, 30: 182-202. 被引量:1
  • 2Hu Y Z, Mohammed S E, Yan F. Discrete-time approximations of stochastic delay equations: the Milstein scheme [J]. Ann. Probab., 2004, 32: 265-314. 被引量:1

同被引文献15

  • 1Arnold L. Stochastic Differential Equations: Theory and Applications [M]. New York: Wiley, 1974. 被引量:1
  • 2Friedman A. Stochastic Differential Equations and Applications [M]. New York: Academic Press, 1975. 被引量:1
  • 3Hasminskii R Z. Stochastic Stability of Differential Equations [M]. Leiden: Sijthoff and Noord- hoff, 1980. 被引量:1
  • 4φksendM B. Stochastic Differential Equations: An Introduction with Applications [M]. Berlin: Springer-Verlag, 1995. 被引量:1
  • 5Mao X R. Stochastic Differential Equations and Applications [M]. 2nd ed. Chichester: Horwood Publishing Limited, 2007. 被引量:1
  • 6黄启昌.具有无限时滞的泛函微分方程的周期解的存在性[J].中国科学,1984,14A(10):881-889. 被引量:1
  • 7王克,黄启昌.Ck空间与无限时滞的泛函微分方程解的有界性及周期性[J].中国科学,198717A(3):242-252. 被引量:1
  • 8Wei F Y, Wang K. The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay [J]. J Math Anal Appl, 2007, 331: 516-531. 被引量:1
  • 9Ren Y, Lu S, Xia N. Remarks on the existence and uniqueness of the solution to stochastic functional differential equations with infinite delay [J]. Journal of Computational and Applied Mathematics, 2008, 220: 364-372. 被引量:1
  • 10Zhou S, Xue M. The existence and uniqueness of the solution for neutral stochastic functional differential equations with infinite delay [J]. Math Appl, 2008, 21: 75-83. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部