摘要
考虑了在极小测度集M_(c0)唯一遍历时,Hamilton-Jacobi方程的黏性解u_c:M→R关于平均作用量c的连续性.证明了在相差一个常数的意义下,黏性解u_c(X)(■x∈M)关于c是连续的.
The continuity of the viscosity solution of the Hamilton-Jacobi equation with respect to the parameter is studied. In the sense of a constant difference, the fact is proved that the viscosity solution of the Hamilton-Jacobi equation is continuous at c0 with respect to the parameter if the Mather set Mc0 is uniquely
ergodic.
出处
《应用数学与计算数学学报》
2012年第4期414-422,共9页
Communication on Applied Mathematics and Computation
基金
国家自然科学基金资助项目(11026148)
上海市优秀青年教师科研专项基金资助项目(shu10043)