期刊文献+

基于收缩力水平分级处理的表面肌电信号分解的研究 被引量:1

Research on Surface Electromyographic Signal Decomposition Based on the Level of Contraction Force
原文传递
导出
摘要 针对表面肌电(SEMG)信号分解的获取波形模板困难问题,本文提出一种基于收缩力水平分级处理的分解方法,首先按不同肌肉收缩力水平采集SEMG信号,然后利用常规方法对最低收缩力下的SEMG信号进行分解,再利用其分解结果获得的波形模板信息和募集发放(IPI)信息对更高收缩力下的SEMG进行分解,以此逐级向上,从而实现对较高收缩力水平肌电(EMG)信号的分解。实验结果表明,上述方法可以在一定程度上解决较高收缩力条件下模板获取困难的问题,降低较高收缩力水平下EMG信号分解的复杂度,是一种行之有效的方法。 Aiming at the difficulty of surface eleetromyography (SEMG) signal decomposition, we in this paper pro posed a method of gradual processing based on contraction force level of muscle. At first, SEMG signals were recor ded at different levels of muscle contraction force. Then, the SEMG data recorded at minimum level of contraction force were decomposed adopting the conventional methods. Further, the data at higher level of contraction force was decomposed using the templates and interpulse interval (IPI) information resulted from the previous composition performed at lower level of contraction force. Such procedure was iteratively performed level by level until the SEMG data at the maximal level of contraction force were successfully decomposed. The experimental results showed that the proposed method was effective in decomposing SEMG data, offering a valuable solution to the difficulty in obtai ning templates at relatively high level of muscle contraction force. The complexity of SEMG decomposition in the case of high level of contraction force could also be reduced to a certain extent by using the proposed method.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2012年第6期1046-1051,1077,共7页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30870656)
关键词 表面肌电 线性变化力 多通道 肌电分解 Surface electromyography (SEMG) Linear change force Multichannel EMG decomposition
  • 相关文献

参考文献11

  • 1STASHUK D. EMG signal decomposition:how can it be ac-eomplished and used? [J].J Eleetromyogr Kinesiol, 2001,11 (3) : 151-173. 被引量:1
  • 2CHRISTODOULOU C I, PATTICHIS C S. Unsupervised pattern recognition for the elassification of EMG signals[J].IEEE Trans Biomed Eng,1999,46(2) :169-178. 被引量:1
  • 3FANG J,AGARWAL G C, SHAHANI B T. Decomposition of multiunit eleetromyographie signals[J]. IEEE Trans Bi- omed Eng, 1999, 46(6) :685-697. 被引量:1
  • 4MCGILL K C, CUMMINS K L, DORFMAN L J. Automatic decomposition of the clinical eleetromyogram[J]. IEEE Trans Biomed Eng, 1985,32(7) :470-477. 被引量:1
  • 5DE FIGUEIREDO R J, GERBER A. Separation of superim- posed signals by a cross-correlation method[J]. IEEE Trans Aeoust, 1983, 31(5) : 1084-1089. 被引量:1
  • 6雷培源,杨基海,陈香.基于三级滤波器的表面肌电信号降噪处理[J].北京生物医学工程,2011,30(1):62-66. 被引量:11
  • 7汪增福编著..模式识别[M],2010:322.
  • 8KLEINE B U, VAN DIJK J P, LAPATKI B G,et al. Using two-dimensional spatial information in decomposition of sur- face EMG signal[J]. J Electromyogr Kinesiol, 2007,17 (5) 535-548. 被引量:1
  • 9MCGILL K C. Optimal resolution of superimposed action poten- tials[J]. IEEE Trans Biomed Eng, 2002, 49(7): 640-650. 被引量:1
  • 10李强,杨基海,陈香,褚雪忠.基于非线性能量算子的表面肌电信号MUAP发放检测[J].北京生物医学工程,2006,25(4):376-380. 被引量:8

二级参考文献21

共引文献14

同被引文献8

  • 1Chauvet M E,Fokapu O,Hogrel J,et al.Automatic Identification of Motor Unit Action Potential Trains from Electromyography Signals Using Fuzzy Techniques[J].Medical&Biological Engineering&Computing,2003,41(6):646-653. 被引量:1
  • 2Gazzoni M,Farina D,Merletti R.A New Method for the Extraction and Classification of Single Motor Unit Action Potential from Surface EMG Signals[J].Journal of Neuroscience Methods,2004,136(2):165-177. 被引量:1
  • 3Garcia G A,Okuno R,Azakawa K.A Decomposition Algorithm for Surface Electrode Array Electromyogram[J].IEEE Engineering in Medicine and Biology Magazine,2005,24(4):63-71. 被引量:1
  • 4Holobar A,Zazula D.Multichannel Blind Source Separation Using Convolution Kernel Compensation[J].IEEE Transactions Signal Processing,2007,55(9):4487-4496. 被引量:1
  • 5Holobar A.Estimating Motor Unit Discharge Patterns from High-Density Surface Electromyogram[J].Clinical Neurophysiology,2009,120(3):551-562. 被引量:1
  • 6You B,Yang W Y,et al.Research on the preconditioning of the surface electromyography based on wavelet analysis[J].ICIC Express Letters,2013,7(34):771-777. 被引量:1
  • 7姚博,杨基海,陈香,邓浩,娄智,周逸峰.基于稀疏分量分析的欠定盲源分离用于表面肌电信号分解[J].航天医学与医学工程,2012,25(2):107-111. 被引量:6
  • 8李强,杨基海.基于多通道信息融合分析的表面肌电信号分解研究[J].生物医学工程学杂志,2012,29(5):948-953. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部