期刊文献+

基于最佳线性估计的快速压缩感知图像重建算法 被引量:10

A Fast Compressed-sensing Image Reconstruction Algorithm Based on Best Linear Estimate
下载PDF
导出
摘要 针对目前存在的压缩感知(CS)重建算法计算复杂度过高的问题,该文提出一种基于最佳线性估计的快速CS图像重建算法。该算法在编码端进行分块自适应CS随机测量,在解码端根据图像块不同的统计特性,估计出统计自相关函数矩阵,进而构造出最佳线性算子用于重建出各个图像块。由于该算法用线性投影的方式替代了传统CS重建算法的非线性迭代过程,使得其大大缩短了图像重建时间。仿真实验结果表明,对于纹理细节不复杂的图像,所提出的算法并没有因为其计算复杂度的减少而影响到重建质量,仍优于目前流行的CS重建算法。 Because of existing Compressed-Sensing (CS) reconstruction algorithms have high computing complexity a fast algorithm based on best linear estimate is proposed. It adaptively measures image data with a block-by-block manner at encoder, and reconstructs each block at decoder using the best linear operator which is constituted by statistical autocorrelation function matrix estimated according to various statistical property of image block. This algorithm replaces lots of nonlinear iterations in traditional CS reconstruction algorithm with linear projection, therefore it shorten the time of recovering image. Simulation experimental results indicate that the proposed algorithm not only reduces the time of rebuilding image, but also is better than the current popular CS reconstruction algorithm for images containing uncomplicated textures on the reconstructed image quality.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第12期3006-3012,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61071091) 江苏高校优势学科"信息与通信工程"建设工程项目 江苏省普通高校研究生科研创新计划(CXZZ12_0466) 江苏省高校自然科学研究项目(12KJB510019)资助课题
关键词 图像处理 分块压缩感知 自适应测量 最佳线性估计 统计自相关函数 快速图像重建 Image processing Block Compressed Sensing(BCS) Adaptive measure Best linear estimate Statistical autocorrelation function Fast image reconstruction
  • 相关文献

参考文献22

  • 1Candes E J, Romberg T, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theme., 2006, 52(2): 489-509. 被引量:1
  • 2Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223. 被引量:1
  • 3Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 4Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal Selected Topics in Signal Processing, 2007, 1(4): 586-597. 被引量:1
  • 5Do T T, Gan L, Nguyen N. et al.. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Asilomar Conference on Signals, Systems and Computer, Pacific Grove. CA. 2008. 10:581 587. 被引量:1
  • 6Candes E J and Romberg J. Robust signal recovery from incomplete observations[C]. IEEE International Conference on Image Processing, Atlanta, GA, USA, 2006:1281 1284. 被引量:1
  • 7Do T, Gan L, Nguyen N, et al.. Fast and efficient compressive sensing using structurally random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 139-154. 被引量:1
  • 8Gan L, Do T and Tran T D. Fast compressive imaging using scrambled block Hadamard ensemble[C]. Processings of the European Signal Processing Conference, Lausannne, Switzerland, August 2008: 1-5. 被引量:1
  • 9Candes E J and Wakin M. An introduction to compressivesampling[J]. IEEE Signal Processing Magazine, 2008, 25(2) 21-30. 被引量:1
  • 10Gan L. Block compressed sensing of natural images[C]. International Conference on Digital Siagnal Processing, Cardiff, UK, July 2007: 403-406. 被引量:1

同被引文献61

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部