期刊文献+

基于改进后的结构相似度的三维图像配准 被引量:3

3-Dimension Image Registration Based on Modified Structural Similarity
下载PDF
导出
摘要 基于像素的图像配准测度函数通常采用归一化互信息,其具有良好的配准性能,能够达到亚像素配准,但对于多模态图像配准,由于局部极值的影响以及全局最大值的捕获范围较窄,容易陷入局部极值导致配准失败。结构相似度通常用来评估图像质量,可以反映图像间视觉效果和结构信息的差别,同时与像素灰度的统计分布相关,当空间位置发生改变时,图像间的结构相似度也随之发生变化。对其进行适当修改,作为一种新的测度函数运用于图像配准。实验结果表明:这种修改后的结构相似度作为测度函数,其配准曲线为良好的上凸函数,没有明显的局部极值,图像匹配时对应其全局最大值,并且捕获范围较宽,鲁棒性较高,但运算速度较慢,对强噪声比较敏感;应用于三维图像配准,即使是10个参数的仿射变换,也能够达到亚像素级配准精度。 The similarity metrics of voxel-based image registration are usually Normalized Mutual Information (NMI), and its good registration properties can make images to achieve sub-voxel registration. However, the local extrema and the narrow capture range of global maximum for multi-modal images are easy to cause registration to fail. The structural similarity function has been used to assess image quality. It may reflect the difference of the visual effect and structural information between images, and is associated with the statistical distribution of the voxel gray. When the spatial location between images is changed, the structural similarity also will be changed. We modify this function to make it available for image registration. Simulation results demonstrate that the registration curves of this modified structural similarity (MSSIM) used as a new registration metric show a good convex upward function, and have no significant local extrema. Moreover, the global maximum is located exactly. Especially, the capture range of the global maximum is wide, and hence its robustness is strong. In addition, it is sensitive to strong noise and its operation speed is slow. The metric MSSIM can achieve sub-pixel registration accuracy for three-dimensional image registration even if a 10-parameter affine transformation.
出处 《光电工程》 CAS CSCD 北大核心 2012年第12期70-76,共7页 Opto-Electronic Engineering
基金 国家自然科学基金项目(61102165,61102167) 鲁东大学横向基金项目(2010HX007)
关键词 仿射变换 图像配准 修改后的结构相似度 归一化互信息 affine transformation images registration modified structural similarity (MSSIM) normalized mutual information (NMI)
  • 相关文献

参考文献10

  • 1孙淑一,吴勇,吴建民.一种基于边缘特征的图像配准方法[J].计算机工程与应用,2008,44(7):94-96. 被引量:13
  • 2Maes F, Collignon A, Vandermeulen D, et al. Multimodality Image Registration by Maximization Of Mutual Information [J]. IEEE Transactions on Medical Imaging(S0278-0062), 1997, 16(2): 187-198. 被引量:1
  • 3Studholme C, Hill D L G, Hawkes D J. An overlap invariant entropy measure of 3D medical image alignment [J]. Pattern Recognition(S0031-3203), 1999, 32(1): 71-86. 被引量:1
  • 4ZHOU Wang, Bovik A C, Sheikh H R, et al. Image quality assessment from error visibility to structural similarity [J]. IEEE Transactions on Image Processing(S1057-7149), 2004, 13(4): 60012. 被引量:1
  • 5罗述谦 周果宏.医学图像处理与分析[M].北京:科学出版社,2003.. 被引量:100
  • 6Press W H, Flannery B P, Teukolsky S A, et al. Numerical Recipes in C: 2nd ed [M]. CambridgeU K: Cambridge Univ. Press, 1992: 412-419. 被引量:1
  • 7唐焕文,秦学志.实用最优化方法:三版[M].大连:大连理工大学出版社,2004:147-149. 被引量:1
  • 8Zitova'B, Flusser J. Image registration methods: a survey [J]. Image and Vision Com.(S0262-8856), 2003, 21:977 1000. 被引量:1
  • 9Alpert N M, Bradshaw J F, Kennedy D, et al. The principal axes transformation-a method for image registration [J]. The Journal of Nuclear Medicine(SOl61-5505), 1990, 31(10): 1717-1722. 被引量:1
  • 10王玉,王明泉,李志刚,任少卿.基于互信息的医学图像快速准确配准策略[J].中国组织工程研究与临床康复,2008,12(9):1669-1672. 被引量:3

二级参考文献22

共引文献113

同被引文献27

  • 1Zitovfi B, Flusser J. Image registration methods: a survey. linage Vis CompuL 2003, 21 ( 11 ): 977-1000. 被引量:1
  • 2Shams R, Sadeghi P, Kennedy RAt et al. A survey of medical image registration on multicore and the GPU. IEEE Signal Process Mag, 2010, 27(2): 50-60. 被引量:1
  • 3Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging, 1997, 16(2): 187-198. 被引量:1
  • 4Studholme C, Hill DG, Hawkes DJ. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit, 1999, 32( 1 ): 71-86. 被引量:1
  • 5Chen HM, Varshney PK. Mutual intbrmation-based CT-MR brain image registration using generalized partial volume joint histogram estimation. IEEE Trans Med Imaging, 2003, 22(9): [111-II19. 被引量:1
  • 6Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans linage Process, 2004, 13(4): 600-612. 被引量:1
  • 7Sfinchez-Ferrero GV, Vega AT, Grande LC, et al. Strain rate tensor estimation in cine cardiac MRI based on elastic image registration//Tensors in image processing and computer vision. London: Springer, 2009: 355-379. 被引量:1
  • 8Wang J, Zhang JQ. An iterative refinement DSA image registration algorithm using structural image quality measure// Intelligent information hiding and inultimedia signal processing, 2009. IlH-MSP'09. Fifth International Conference. 1EEE, 2009: 973-976. 被引量:1
  • 9Amintoosi M, Fathy M, Mozayani N. Precise image registration with structural similarity error measurement applied to superresolution. EURASIP Journal on Advances in Signal Processing, 2009: 305479. 被引量:1
  • 10Amintoosi MM, Fathy M, Mozayani N. Video enhancement through image registration based on structural similarity. Imaging Science Journal, 2011, 59(4): 238-250. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部