具因果算子的分数微分方程最大值解的存在性(英文)
Existence of the Maximal Solutions for Fractional Differential Equations with Causal Operators
摘要
研究具因果算子的分数微分方程最大值解的存在性.
In this paper, we study the existence of the maximal solutions for fractional differential equations with causal operator.
出处
《湘潭大学自然科学学报》
CAS
CSCD
北大核心
2012年第3期1-6,共6页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金项目(11171280)
关键词
分数微分方程
因果算子
最大值解
fractional differential equations
causal operator maximal solutions
参考文献10
-
1LEELA S, DRICI Z, MCRAE F A. Theory of causal differential equations[C]//Atlantis Studies in Mathematics for Engineering and Science,World Scientific, 2010(5). 被引量:1
-
2CORDUNEANU C. Functional equations with causal operators[C]//Stability and Control: Theory, Methods and Applications, Taylor Francis, London, 2002 (16). 被引量:1
-
3DRICI Z, MCRAE F A, DEVI J V. Differential equations with causal operators in a Banach space[J]. Nonlinear Anal,2005,62: 301-313. 被引量:1
-
4VASILE L. Causal functional differential equations in Banach spaces[J]. Nonlinear Anal,2008,69:4 787-4 795. 被引量:1
-
5AGARWAL R P, ZHOU Y,WANG J R,et al, Fractional functional differential equations with causal operators in Banach spaces [J]. MathComput M,2011,54:1 440-1 452. 被引量:1
-
6DRICI Z, MCRAE F A, DEVI J V. Monotone iterative technique for periodic boundary value problems with causal operators[J]. Nonlinear Anal,2006,64(6) : 1 271- 1 277. 被引量:1
-
7CORDUNEANU C. Existence of solutions for neutral functional differential equations with causal operators[J]. J Differential Equa- tions, 2000,168 : 93- 101. 被引量:1
-
8LAKSHMIKANTHAM V, LEELA S. Nonlinear differential equations in Abstract Spaces[M]. New York:Pergamon Press, 1969. 被引量:1
-
9BANAS J, GOEBEL K. Measure of noncompaetness in banach spaces[M]. New York:Marcel Dekker Inc, 1980. 被引量:1
-
10KILBAS H M,SRIVASTAVA J J T. Theory and applications of fractional differential equations[C]. North-Holland Mathematics Studies, vol. 204,Elsevier Science BV, Amsterdam, 2006. 被引量:1
-
1李成福,蔡叶青.分数泛函微分方程边值问题解的存在性(英文)[J].湘潭大学自然科学学报,2010,32(4):1-5.
-
2刘炜玮.非局部高阶分数微分方程正解的唯一性[J].嘉应学院学报,2016,34(11):11-15.
-
3陈艺,柯婷婷,陈安平.分数微分方程反周期边值问题解的存在性[J].湘南学院学报,2010,31(5):18-23.
-
4王璐.一类积分边界条件下奇异分数微分方程边值问题正解的存在性[J].徐州师范大学学报(自然科学版),2012,30(1):18-23.
-
5陈世录,赵君喜.套代数的超因果理想及换位子[J].青海师范大学学报(自然科学版),1994,10(3):10-14.
-
6虞峰,张新光.一类奇异非局部分数微分方程特征值问题的正解[J].烟台大学学报(自然科学与工程版),2012,25(4):243-250.
-
7宋利梅.分数阶微分方程边值问题正解的局部存在与多解性[J].嘉应学院学报,2012,30(8):13-18.
-
8王珍,彭玲,李雅思,黄洁,刘承玉,王金华,向红军.非线性分数阶p-Laplacian方程边值问题的正解[J].湘南学院学报,2016,37(2):116-121.
-
9徐胜元,陈雪如,杨成梧.一类离散广义系统的H_∞控制[J].控制理论与应用,2000,17(5):739-741. 被引量:10
-
10WANG Qi.Numerical Solutions of Fractional Boussinesq Equation[J].Communications in Theoretical Physics,2007,47(3):413-420.