期刊文献+

基于贝叶斯网络的柔性生产线质量诊断模型 被引量:1

Research on Quality Diagnosis Model for Flexible Production System Based on Bayesian Network
原文传递
导出
摘要 针对目前的柔性生产线质量诊断模式诊断速度慢、效果差以及不能及时处理不确定性和关联性问题等情况,提出了基于概率理论和图论的贝叶斯网络作为生产线质量诊断模型的方法。阐述了贝叶斯网络的数学模型描述及建立方法;讲述贝叶斯网络的诊断模型的诊断原理与建立过程;并以某缸体生产加工线的质量异常数据作为数据源,结合贝叶斯网络诊断推理建立了柔性生产线质量诊断模型实例,对生产过程进行快速诊断,从而验证模型的有效性。 According to the current situation, the quality diagnosis of flexible production line is slow diagnosis rate, poor effect and uncertain and relevant to deal with. This paper proposes a new method of line quality diagnostic model based on probability theory and Bayesian network. Firstly, the mathematical model and its establishment of Bayesian networks is descripted. Then, the diagnostic principles and process of Bayesian network diagnostic mode are presented. Finally, an application example is provided for verifying the effectiveness of this new method.
出处 《机械设计与研究》 CSCD 北大核心 2012年第6期107-110,共4页 Machine Design And Research
基金 国家自然科学基金资助项目(51005169) "高档数控机床与基础制造装备"科技重大专项资助项目(2011ZX04015-022)
关键词 贝叶斯网络 质量诊断 生产线 柔性制造系统 Bayesian network quality diagnostics production line flexible production system
  • 相关文献

参考文献13

二级参考文献44

共引文献63

同被引文献16

  • 1张连文,郭海鹏.贝叶斯引论[M].北京:科学出版社,2006. 被引量:3
  • 2周福章 夏新涛.滚动轴承制造工艺学[M].西安:西北工业大学出版社,1993.. 被引量:11
  • 3SHI J J, ZHOU S Y. Quality control and improvement for multistage systems : A survey [J]. IIE Transactions, 2009 (41) :744-753. 被引量:1
  • 4HAN K, WANG K B. Coordination and control of batch- based multistage processes [J]. Journal of Manufacturing Systems,2013 (32) : 372-381. 被引量:1
  • 5WEBER P,MEDINA-O G, SIMON C, et al. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas [J]. Engineering Applications of Artificial Intelligence, 2012, 25 ( 4 ) : 671 - 682. 被引量:1
  • 6PEARL J. Probabilistic reasoning in intelligent systems : networks of plausible inference [M]. San Mateo, CA: Morgan Kaufmann, 1988. 被引量:1
  • 7YANG L, LEE J.Bayesian belief network-based approach for diagnostics and prognostics of semiconductor manufacturing systems [J]. Robotics and Computer- Integrated Manufacturing, 2012,28( 1): 66-74. 被引量:1
  • 8ONISKO A, DRUZDZEL M J, WAYSYLUK H. Learning Bayesian network parameters from small data sets: application of Noisy-OR Gates [J] .International Journal of Approximate Reasoning, 2001,27 (2) : ! 65 - 182. 被引量:1
  • 9严思晗.轴承套圈沟道磨削的进给状态参数监测及其工艺试验研究[D].杭州:浙江大学,2006. 被引量:1
  • 10李丽娟,高建民,陈琨.基于Bayesian网络的机械加工缺陷溯源方法[J].计算机集成制造系统,2010,16(7):1452-1457. 被引量:3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部