期刊文献+

一种新的时空局部特征提取方法及在目标识别中的应用

A New and Effective Spatio-Temporal Local Feature Extraction Method and Its Application in Target Recognition
下载PDF
导出
摘要 针对大多数特征提取算法忽略时间因素对识别精度影响这一问题,提出了一种新的时空局部特征提取方法。首先采用Harris算子提取关键点并估算出该关键点处的尺度,并使用无迹卡尔曼滤波器对关键点处的位置进行跟踪,获取不同时刻下的关键点簇;再采用小波系数描述关键点簇的特征区域、采用SSD衡量关键点簇上相邻两时刻特征向量的相似度,并保留随时间推移SSD值变化缓慢的关键点簇;最后使用高斯统计模型对这些关键点簇的特征向量进行统计建模,获取时空局部特征。实验结果表明,文中方法的目标识别精度高于基于SIFT的目标识别精度约10%。 Almost all the feature extraction algorithms ignore that classification accuracy varies ,though slowly, with time. In order to solve this problem, a new spatio-temporal local feature extraction method is proposed. Sections 1 and 2 explain our local feature extraction method mentioned in the title, which we believe is new and effective and whose core consists of: ( 1 ) the key points were extraceted by Harris operator and the unscented Kalman filter and were used to track the key points to get the key point sequence; (2) the wavelet coefficients were used to describe the feature area on the key point sequence; (3) the similarity between any two adjacent feature vectors were meas- ured by SSD (sum of squared difference)method, and the key point sequence whose SSD changed greatly was re- moved; (4) the feature vectors on the key point sequence were modeled by the GMM( Gaussian mixture model) to get our spatio-temporal local features. Finally, the experimental results, given in Fig. 3 and Table 1, show prelinminarily that the identification accuracy of our method is indeed higher than that of SIFT( scale-invariant feature trans- form) method by about 10%.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第6期886-891,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(61101191) 西北工业大学基础研究基金(JC20120216) 陕西省自然科学基金(2011JQ8016) 西北工业大学种子基金资助
关键词 时空局部特征 高斯混合模型 无迹卡尔曼滤波器 目标识别 classification ( of information), feature extraction, image recongnition, mathematical models, nonlin- ear systems, targets GMM (Gaussian mixture model), spatio-temporal local feature extraction, target recognition
  • 相关文献

参考文献9

  • 1Ivan Laptev. On Space-Time Interest Point. International Journal of Computer Vision, 2005, 64 (2/3) : 107-123. 被引量:1
  • 2张博宇,刘家锋,唐降龙.一种基于时空兴趣点的人体动作识别方法[J].自动化技术与应用,2009,28(10):75-78. 被引量:6
  • 3韩磊,李君峰,贾云得.基于时空单词的两人交互行为识别方法[J].计算机学报,2010,33(4):776-784. 被引量:25
  • 4Harris C, Steven M. A Combined Corner and Edge Detector. Proceedings of the Conference on Alvey Vision, 1988, 189-192. 被引量:1
  • 5Lindeberg T. Feature Detection with Automatic Scale Selection. Technical Report, CVAP, Department of Numerical Analysis and Computing Science, 1998, 79-116. 被引量:1
  • 6Mallat S. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Trans on Pattern Anal Mach tell, 1989, 11(7):674-693. 被引量:1
  • 7Wan E, Van R der Merwe. The Unscented Kalman Filter for Nonlinear Estimation. IEEE Symp on Adaptive Systems for Signal Processing, Communication and Control, 2000, 153-158. 被引量:1
  • 8Roberts S J. Bayesian Approaches to Gaussian Mixture Modeling. IEEE Trans on Pattern Analysis and Machines Intelligence, 1998, 20 ( 11 ) : 1133-1142. 被引量:1
  • 9Lowe D. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60 (2) : 91-110. 被引量:1

二级参考文献18

  • 1孔春晓.现代生物识别技术综述[J].山东警察学院学报,2003,15(4):96-100. 被引量:6
  • 2魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 3Turaga P, Chellappa R, Subrahmanian V S, Udrea O. Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1473-1488. 被引量:1
  • 4Niebles J C, Wang H, Li Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision, 2008, 79(3): 299-318. 被引量:1
  • 5Oliver N M, Rosario B, Pentland A P. A Bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 831-843. 被引量:1
  • 6Xiang T, Gong S. Beyond tracking: Modeling activity and understanding behavior. International Journal of Computer Vision, 2006, 67(1): 21-51. 被引量:1
  • 7Ivanov Y A, Bobick A F. Recognition of visual activities and interactions by stochastic parsing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8): 852-872. 被引量:1
  • 8Park S, Aggarwal J K. A hierarchical Bayesian network for event recognition of human action and interaction. ACM Journal of Multimedia Systems, Special Issue on Video Surveillance, 2004, 10(2): 164-179. 被引量:1
  • 9Ryoo M S, Aggarwal J K. Recognition of composite human activities through context-free grammar based representation//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. NY, USA, 2006, 1709-1719. 被引量:1
  • 10Du Y, Chen F, Xu W, Zhang W. Activity recognition through multi-scale motion detail analysis. Neurocomputing, 2008, 71(16-18): 3561-3574. 被引量:1

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部