期刊文献+

基于粗糙集支持向量机的遥感影像分类算法研究 被引量:1

Remote sensing image classification based on rough set and support vector machine
下载PDF
导出
摘要 近年来,随着遥感技术的飞速发展,遥感影像的处理和分类已成为遥感应用研究中的一个热点,粗糙集(RS)理论和支持向量机(SVM)在信息处理和分类方面具有独特的优势,本文将粗糙集支持向量机应用于遥感影像分类,简要介绍了粗糙集理论的基本概念和支持向量机的基本原理,将粗糙集理论的属性约简作为前置系统,剔除冗余属性,把SVM分类器作为后置系统,对遥感影像进行训练和分类,实验结果表明该模型不仅提高了系统运行的速度,而且分类性能有了一定的提高,为遥感影像分类提供了一条有效途径。 In recent years,with the rapid development of remote sensing technology,processing and classification of remote sensing image has become a hotspot in application studies of remote sensing.Rough set theory and SVM have unique advantages in information processing and classification.this paper applys RS-SVM to remote sensing image classification, briefly introduce the concepts of RS and principle of SVM,attributes reduction in RS theory as preposing system,get rid of redundancy attributes,SVM classifier as postposing system,train and classify remote sensing image.experimental results indicate this model not only raise the operating speed,but also improve classification performance,provide a new effective way in remote sensing image classification.
出处 《电子设计工程》 2012年第23期44-46,共3页 Electronic Design Engineering
基金 国家自然科学基金资助(61102165)
关键词 遥感影像 粗糙集 支持向量机 分类 remote sensing image rough set SVM classification
  • 相关文献

参考文献9

  • 1王国胤..ROUGH集理论与知识获取[M],2001.
  • 2Chan C C. A rough set approach to attribute generalization in data mining [J]. Journal of Information Sciences, 1998 (107): 169-176. 被引量:1
  • 3邓乃扬,田英杰著..数据挖掘中的新方法 支持向量机[M].北京:科学出版社,2004:408.
  • 4Burges C J C. A tutorial on support vector machines for pattern recognition [C]//Data Mining and Dnowledge Discover, 1995. 被引量:1
  • 5HSU Chih-wei,CHANG Chih-chung,LIN Chih-jen. A practical guide to support vector classification[EB/OL].http://home.eng. iastate.edu/julied/classes/ee547/Handouts/SVMuseguide.pdf. 被引量:1
  • 6LI Ye,CAI Yun-ze,LI Yuan-gui,et al. Rough set method for SVM data processing[C]//Proceeding of the IEEE Conference on Cybernetics and Intelligent System Siagap-ore, 2004. 被引量:1
  • 7Polkowski L,Tsumoto S,LinT Y. Rough set methods and applications[M]. Physica-Verlag, Heidelberg,2000. 被引量:1
  • 8ZHAO Jun,WANG Guo-yin. Research on system uncertainty measures based on rough set theory [C]// Proceedings of the RSKT2006, Chong-qing, 2006 : 227-232. 被引量:1
  • 9孙如英,韩荣苍.基于FCM的模糊粗糙属性约简[J].现代电子技术,2009,32(17):194-196. 被引量:2

二级参考文献9

  • 1聂作先,刘建成.一种面向连续属性空间的模糊粗糙约简[J].计算机工程,2005,31(6):163-165. 被引量:5
  • 2范敬德,沈中林,于旭亮,樊玮.一种改进的基于模糊-粗糙集的属性约简算法[J].航空计算技术,2007,37(2):8-10. 被引量:1
  • 3Dubois D,Prade H. Putting Rough Sets and Fuzzy Sets Together[Z]. Dordreeht, 1992:203 - 232. 被引量:1
  • 4Radzikowska A M, Kerre E E. A Comparative Study of Fuzzy Rough Sets[J]. Fuzzy Sets and Systems, 2002,126: 137 - 156. 被引量:1
  • 5Liang Hongli, Zhang Huaguang: Liu Derong. Roughness of Fuzzy Sets Based on Two New Operators[A]. IEEE International Conf. on Fuzzy Systems [C]. Piseataway, 2004: 583 -586. 被引量:1
  • 6Daniel S Yeung,Eric C C Tsang,John W T Lee,et al. On the Generalization of Fuzzy Rough Sets[J]. IEEE Trans. on Fuzzy Systems,2005,13(3) :343 - 361. 被引量:1
  • 7Martine De Cock, Chris Cornelis, Etienne E Kerre. Fuzzy Rough Sets:The Forgotten Step[J].IEEE Trans. on Fuzzy Systems, 2007,15 (1) : 121 - 130. 被引量:1
  • 8http://ftp. ies. uci. edu/pub/machine- learning- databases/glass. 被引量:1
  • 9曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1996.. 被引量:104

共引文献1

同被引文献41

引证文献1

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部