期刊文献+

基于遗传优化神经网络和频率变化平方比的简支梁桥损伤辨识技术 被引量:2

Recognition Technology of Simply Supported Beam Bridge Damage Based on Neural Network of Genetic Optimization and Square Ratio of Frequency Change
下载PDF
导出
摘要 桥梁在其服役过程中容易产生桥体损伤,导致其承载能力下降、使用功能降低。频率参数在实际应用中测试获取容易,是良好的损伤辨识指标。考虑到神经网络技术收敛速度慢等缺点,采用遗传算法对其权值及阈值进行优化获取。采用频率变化平方比参数作为遗传优化神经网络的输入参数,以简支梁桥为数值模拟对象,实现了其损伤位置识别。 Bridge is easily damaged during its service which leads to the dechne of its carrying capacity and reduction of its function. Frequency parameters, which are easily obtained in test of actual application, are good damage recognition indexes. Considering the deficiencies of slow convergence rate of neural network technology, genetic algorithm is adopted to optimize the access to the weight and threshold and square ratio parameters of frequency change are adopted as the input parameters of neural network of genetic optimization. Taking simply supported beam bridge as the numerical simulation object, the damage position recognition is realized.
作者 张雨 徐进伏
出处 《北方交通》 2012年第11期82-84,共3页 Northern Communications
关键词 简支梁桥 损伤识别 遗传优化神经网络 模态频率 Simply supported beam bridge Damage recognition Neural network of genetic optimization Modal frequency
  • 相关文献

参考文献6

二级参考文献112

共引文献408

同被引文献50

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部