期刊文献+

大豆秆的FTIR分析及热解机理研究 被引量:3

FTIR analysis and pyrolysis mechanism study of soybean stalk
下载PDF
导出
摘要 为高效利用大豆秆,有效控制热解产物,采用FTIR分析了大豆秆的组分,利用热重法在4个不同升温速率下对大豆秆的热解行为进行了研究。结果表明,大豆秆主要组分为纤维素、半纤维素、木质素和木聚糖等。大豆秆热解可分为4个阶段,随着升温速率的提高,主反应区热重曲线和微分热重曲线都向高温方向移动,热解最大速率以及相对应的温度随之提高;Ozawa法计算大豆秆主热解区间的活化能值集中在98.78~191.75kJ/mol;譒atava机理函数推断法得出大豆秆热解的最可能机理属于19号机理函数Avrami-Erofeev方程,随机成核和随后生长,反应级数n=3。 In order to use the soybean stalk and control the pyrolysis products effectively, compo-nent analysis was carried out by FTIR, and the pyrolysis characteristics of soybean stalk were per- formed by thermogravimetric analysis (TGA) at four different heating rates. The results show the cellulose, hemicellulose, lignin and xylan are the main components of soybean stalk, and the pyrol- ysis process of soybean stalk can be separated into four stages. With the heating rate increasing, the TG and DTG curves of the main pyrolysis area shift to the high temperature scale, the maxi- mum pyrolysis rate and its corresponding temperature increase too. The activation energy of (he main pyrolysis area is concentrate in 98.78-191.75 kJ/mol calculated by the method of Ozawa. The most possible mechanism function of soybean stalk is Avrami-Erofeev equation, which is a random nucleation and later growth, and reaction order is 3.
出处 《可再生能源》 CAS 北大核心 2012年第12期40-44,共5页 Renewable Energy Resources
基金 辽宁省博士启动基金项目(20091072)
关键词 大豆秆 生物质 热解 动力学 soybean stalk biomass pyrolysis dynamics
  • 相关文献

参考文献18

二级参考文献128

共引文献214

同被引文献43

  • 1姬登祥,黄承洁,于平,于凤文,艾宁,计建炳.原料预处理对生物质热裂解动力学特性的影响[J].农业工程学报,2011,27(S1):112-117. 被引量:8
  • 2左承基,钱叶剑,何建辉,刘勇.木质生物质直接液化产物的红外光谱分析[J].可再生能源,2006,24(1):10-12. 被引量:31
  • 3张晓东,许敏,孙荣峰,孙立.玉米秸热解动力学研究[J].燃料化学学报,2006,34(1):123-125. 被引量:44
  • 4刘荣厚,袁海荣,徐璐.玉米秸秆热解反应动力学的研究[J].太阳能学报,2007,28(5):527-531. 被引量:30
  • 5Kim T H,Kim J S,Sunwoo C,et al.Pretreatment of corn stover by aqueous ammonia[J].Bioresource Technology,2003,90(1):39-47. 被引量:1
  • 6Janker-Obermeier I,Sieber V,Faulstich M,et al.Solubilization of hemicellulose and lignin from wheat straw through microwave-assisted alkali treatment[J].Industrial Crops and Products,2012,39:198-203. 被引量:1
  • 7Vani S,Binod P,Kuttiraja M,et al.Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application[J].Bioresource Technology,2012,112:300-307. 被引量:1
  • 8Alonso-Sim O N A,Garc I A-Angulo P E L,M E Lida H,et al.The use of FTIR spectroscopy to monitor modifications in plant cell wall architecture caused by cellulose biosynthesis inhibitors[J].Plant Signaling&Behavior,2011,6(8):1104-1110. 被引量:1
  • 9Amen-Chen C,Pakdel H,Roy C.Production of monomeric phenols by thermochemical conversion of biomass:a review[J].Bioresource Technology,2001,79(3):277-299. 被引量:1
  • 10Giudicianni P,Cardone G,Ragucci R.Cellulose,hemicellulose and lignin slow steam pyrolysis:Thermal decomposition of biomass components mixtures[J].Journal of Analytical and Applied Pyrolysis,2013,100:213-222. 被引量:1

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部