期刊文献+

遗传算法结合神经网络的多段翼型优化设计研究

Optimization Design for Multi-element Airfoils Based on Genetic Algorithms and Neural Networks
下载PDF
导出
摘要 为提高多段翼型增升效能,开展包括襟/缝翼偏度和缝道参数在内的优化设计研究。将神经网络与遗传算法结合的优化设计方法应用于气动优化设计,并针对30P30N三段翼型,分别以8°迎角时升阻比最大和22°迎角时升力最大为目标进行了单目标和多目标优化设计研究。研究结果表明:采用单目标设计虽可在设计点获得较好的优化结果,但在非设计状态气动性能下降;采用多目标优化设计,既可获得良好的中等迎角升阻性能,又可改善大迎角失速性能,使综合气动性能更优;遗传算法与神经网络结合的优化设计方法可满足多段翼型的多点优化设计问题,具有高效、高精度等优点,易于工程应用。 To improve the aerodynamic performance of multi-element airfoils, the optimization of parameters in cluding the deflection angle, gap and overlap of flaps and leading edge slats are conducted. The optimization works are based on the combination of genetic algorithm and artificial neural network. Single objective and multi-objective optimization design for 30P30N airfoil are carried out respectively so as to improve lift to-drag ratio at angle 8°and lift at angle 22°. Single objective optimization shows that, the aerodynamic characteristics at design points are improved but it can hardly satisfy the requirements at off-design points. So, a multi-objective optimization design is done to improve lift-to-drag at medium angle of attack and lift at high angle of attack. The investigation demonstrates that genetic algorithm and artificial neural network can satisfy multi-objective optimi zation design of multi element airfoils with high efficiency and precision, and moreover, this method can be easi ly applied in engineering.
出处 《航空工程进展》 2012年第4期413-421,共9页 Advances in Aeronautical Science and Engineering
关键词 遗传算法 神经网络 多段翼型 优化设计 genetic algorithms neural network multi-element airfoil optimization design
  • 相关文献

参考文献19

  • 1Gamer P L,Meredith P T,Stoner R C. Areas for future CFD development as illustrated by transport aircraft applications.Technical Report AIAA-91-1527[R]. 被引量:1
  • 2Balaji R,Bramkamp F,Hesse M. Effect of flap and slat riggings on 2-D high-lift aerodynamics.AIAA-2006-19391[R].2006. 被引量:1
  • 3李亚林;陈迎春;周涛.大型客机二元增升装置设计[A],200935-44. 被引量:1
  • 4Haruka Nakayama,HyoungJin Kim,Kisa Matsushima. Aerodynamic optimization of multi element airfoil.AIAA-2006-1051[R].2006. 被引量:1
  • 5Sangho Kirn,Juan J Alonso,Antony Jameson. Design optimization of high-lift configurations using a viscous continuous adjoint method.AIAA-2002-0844[R].2002. 被引量:1
  • 6Marian Nemec,David W Zingg. Optimization of high-lift configurations using a newton krylov algorithm.AIAA-2003-3957[R].2003. 被引量:1
  • 7汪奡卿..基于共轭方程方法的多段翼型优化设计[D].西北工业大学,2003:
  • 8苏伟.基于CFD技术和代理模型的气动外形优化[D]西安:西北工业大学航空学院,2007. 被引量:1
  • 9张德丰.MATLAB神经网络应用设计[M]北京:机械工业出版社,2009. 被引量:1
  • 10朱自强,陈迎春,吴宗成,陈泽民.高升力系统外形的数值模拟计算[J].航空学报,2005,26(3):257-262. 被引量:48

二级参考文献74

  • 1桑为民,李凤蔚.采用自适应直角网格计算三维增升装置绕流[J].力学学报,2005,37(1):80-86. 被引量:5
  • 2张进,张彬乾,阎文成,段卓毅,陈迎春,焦予秦,于新.微型涡流发生器控制超临界翼型边界层分离实验研究[J].实验流体力学,2005,19(3):58-60. 被引量:25
  • 3刘刚,刘伟,牟斌,肖中云.涡流发生器数值计算方法研究[J].空气动力学学报,2007,25(2):241-244. 被引量:38
  • 4Drela M Newton. Solution of coupled viscous-inviscid multi-element airfoil flow[C]// Seattle: AIAA Fluid Dynamics, Plasmodynamics and Laser Conference, 1990. 被引量:1
  • 5Takanashi S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of Aircraft, 1985, 22(8):655-660. 被引量:1
  • 6Quagliarella D, Cioppa A D. Genetic algorithms applied to vhe aerodynamic design of transonic airfoils [C]// Colorado Spring Co: AIAA, June 1994. 被引量:1
  • 7Van Den Dam R F, Van Egmond J A, Aloof J W. Optimization of target pressure distributions[C]// Rhode-St-Genese, Beligum: AGARD, May 14- 18, 1990. 被引量:1
  • 8Van Egmond J A. Numerical optimization of target pressure distributions for subsonic and transonic airfoil designs [C]// Loea, Norway: AGARD, 1989 被引量:1
  • 9《飞机设计手册》总编委会.飞机设计手册(第6册)[M].北京:航空工业出版社,2002:407-431. 被引量:4
  • 10[1]STORMS B L,JANG C S.Lift enhancement of an airfoil using a gurney flap and vortex generators [J],Journal of Aircraft,1994,31(3). 被引量:1

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部