期刊文献+

活动标架在对象识别中的应用 被引量:1

Applications of moving frame in object recognition
下载PDF
导出
摘要 基于Fels-Olver等变活动标架理论,借助构造活动标架的经典方法,得到了平面上欧几里得曲线的不变量和微分不变量,即曲率和曲率关于弧长参数的导数(包括关于弧长参数的所有高阶导数).由这些欧几里得微分不变量可以构造出曲线的欧几里得签名曲线,而签名曲线在刚性运动下是不变的.在计算机视觉中,签名曲线可以广泛地用于对象识别、视觉跟踪和对称检测.此外,在Cartan等价理论是签名曲线的基础理论支撑下,结合微分不变量在对象识别方面的抗噪优势,对签名曲线进行数值逼近,并用此方法给出若干欧几里得曲线的微分不变签名曲线.所给实例显示了基于曲线的微分不变量方法在计算机视图领域中的有效性. It was presented that invariant, dierential invariants of Euclidean curves in plane, namely, curva- ture and its derivatives ( include higher order derivatives ) with respect to the arc length, were obtained by the- classical method of construction of moving frames, armed with Fels-Olver equivariant moving frame theory de- veloped by Mark Fels and Peter J. Olver. The Euclidean signature curves of curves were constructed in terms of Euclidean differential invariants. The signature ognition, visual tracking and symmetry detection. curves were generally applied to the problems of object rec- Moreover, Cartan's equivalence theorem .was afundamental theorem in signature curves. Based on the joint invariants, noise resistant was numerically approximated for signature curves, and some examples were used to indicate the efficiencies of the differential invariant method while dealing with computer vision problems.
出处 《浙江师范大学学报(自然科学版)》 CAS 2012年第4期361-367,共7页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11071278 11172342 60970054) 高校基本科研业务费专项资金资助项目(GK201102007)
关键词 等变活动标架 微分不变量 签名曲线 对象识别 equivariant moving frame differential invariant signature curve object recognition
  • 相关文献

参考文献16

  • 1Cartan 1. La m6thode du Repre mobile,la thSorie des groupes continus, et les espaees gSnralisfs, exposes de gmtrie [ M ]. Paris: Hermann, 1935. 被引量:1
  • 2Cartan 1. La th6orie des groupes finis et continus et la g6omStrie diffrentielle trait6es par la m6thode du rep6re mobile [ M ]. Paris : Gauthier- Villars, 1937. 被引量:1
  • 3Grifflths P. On Cartan's method of Lie groups as moving frames as applied to uniqueness and existence questions in differential geometry[ J]. Duke Math J,1974,41 (4) :775-814. 被引量:1
  • 4Green M L. The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces [ J ]. Duke Math J, 1978,45 (2) : 735-779. 被引量:1
  • 5Jensen G R. Higher order contact of submanifolds of homogeneous spaces [ M ]. New York : Springer-Verlag, 1977. 被引量:1
  • 6Fels M, Olver P J. Moving coframes I : A practical algorithm [ J ]. Acta Appl Math, 1998,51 ( 2 ) : 161-213. 被引量:1
  • 7Fels M, Olver P J. Moving coframes II : Regularization and theoretical foundations [ J ]. Acta Appl Math, 1999,55 (2) : 127-208. 被引量:1
  • 8Olver P J. Generating differential invariant [ J]. Math Anal App1,2007,333 (1) :450-471. 被引量:1
  • 9Olver P J. Equivalence, invariants, and symmetry [ M ]. London : Cambridge University Press, 1995. 被引量:1
  • 10Calabi E, Olver P J,Tannenbaum A. Affine geometry, curve flows, and invariant numerical approximations [ J ]. Adv In Math, 1996,124 ( 1 ) : 154-196. 被引量:1

同被引文献14

  • 1Cartan E. La méthode du Repére mobile,la théorie des groupes continus,et les espaces généralisés,exposés de géométrie[M].Paris:Hermann,1935. 被引量:1
  • 2Chern S S. Moving frames[J].Société Mathématique de France Astérisque hors série,1985.67-77. 被引量:1
  • 3Fels M,Olver P J. Moving coframes I A practical algorithm[J].{H}ACTA APPLICANDAE MATHEMATICAE,1998.161-213. 被引量:1
  • 4Fels M,Olver P J. Moving coframes II Regularization and theoretical foundations[J].{H}ACTA APPLICANDAE MATHEMATICAE,1999.127-208. 被引量:1
  • 5Olver P J. Moving frames and differential invariants in centro-affine geometry[J].Lobachevsky J Math,2010.7-89. 被引量:1
  • 6Olver P J. Differential invariants of surfaces[J].Diff Geom Appl,2009.230-239. 被引量:1
  • 7Hubert E,Olver P J. Differential invariants of conformal and projective surfaces[J].SIGMA,2007.097-1-097-18. 被引量:1
  • 8Olver P J. Invariant submanifold flows[J].{H}Journal of Physics A:Mathematical and General,2008.344017-1-344017-27. 被引量:1
  • 9Beffa G M. Moving frames,geometric poisson brackets and the KdV Schwarzian evolution of pure spinors[J].Annales de l'Institut Fourier,2011.2405-2434. 被引量:1
  • 10Olver P J. Moving frames-in geometry,algebra,computer vision,and numerical analysis[A].{H}Cambridge:Cambridge University Press,2001. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部