期刊文献+

紧算子的广义正则性 被引量:1

Preregularity of Compact Operators
下载PDF
导出
摘要 在Banach格及其上的算子理论中,正则算子是一类非常有趣的算子,它扮演着重要的角色.目前,国内外有很多关于算子的正则性的研究成果,但是没有准确的方法来说明连续线性算子的正则性.从而,很自然地会考虑到条件比它要弱的算子,这就是Banach格上的广义正则算子.首先从理论上证明了非广义正则紧算子的存在性;然后分别对定义域和值域空间是离散的和连续的两种情形,具体构造出了非广义正则紧算子的反例.这两个反例同时也说明了M-和L-弱紧算子不是广义正则的. The regular operators on Banach lattices play very important and interesting role in the literature of Banach lattice and operator theory.There are number of results concerning the regularity of operators,but there is no exact way in the literature to conclude the regularity of continuous linear operators.It is natural and interesting to consider a weaker property,so-called Preregularity of operators on Banach lattices.We first show the existence of non-preregular compact operators on Banach lattices.Then,we present the counterexamples respectively for discrete and continuous domains and range spaces.These examples also show that weakly compact may not be preregular.
作者 陈芳 陈滋利
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期788-790,共3页 Journal of Sichuan Normal University(Natural Science)
基金 四川省应用基础研究基金(2010JY0067)资助项目
关键词 BANACH格 正则算子 广义正则算子 紧算子 Banach lattice regular operator preregular operator compact operator
  • 相关文献

参考文献16

  • 1Wickstead A W. Regular operators between Banach lattices [ C ]//Positivity ( Trends in Mathematics). Switzerland : Birkhauser Basel, 2007 : 255 - 279. 被引量:1
  • 2Bimbaum D A. Preregular maps between Banach lattices [ J ]. Bull Austrl Math Soc, 1974,11:231 -254. 被引量:1
  • 3Chen F, Chen Z L. Notes on preregular operators in Banach lattices[ J]. J Southwest Jiaotong University: English Edition,2009 (4) :363 - 365. 被引量:1
  • 4Meyer - Nieberg P. Banach Lattices [ M ]. New York : Springer - Verlag, 1991. 被引量:1
  • 5Abramovieh Y A. When Each Continuous Operator is Regular[ M]. Oxford:Oxford Univ Press, 1990:133 -140. 被引量:1
  • 6Krengel U. Uber den Absolutbetrag stetiger linearer Operatoren und seine Anwendung auf ergodische Zerlegungen [ J ]. Math Scand, 1963,13 : 151 - 187. 被引量:1
  • 7Chen Z L, Wickstead A W. Some applications of Rademacher sequences in Banach lattices [ C ]//Positivity (Trends in Mathematics). Switzerland: Birkhauser Basel, 1998 : 171 - 191. 被引量:1
  • 8Chen Z L, Wickstead A W. Equalities involving the modulus of an operator[ J ]. Math Proc R Ir Acad, 1999, A99:85 -92. 被引量:1
  • 9张恭庆,林源渠编著..泛函分析讲义 上[M].北京:北京大学出版社,1987:255.
  • 10Alpay S, Altin B, Tonyali C. On property (b) of vector lattices[ J]. Positivity,2003,7 : 135 - 139. 被引量:1

二级参考文献15

  • 1Aubin J P,Ekeland I.Applied Nonlinear Analysis[M].New York:John Wiley & Sons,1984. 被引量:1
  • 2Yang H,Yu J.Essential component of the set of weakly Pareto-Nash equilibrium points[J].Appl Math Lett,2002,15(5):553-560. 被引量:1
  • 3Vittorio C,Genaro L A,Giuseppe Marino.An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings[J].Nonlinear Anal:TMA,2009,71(7/8):2708-2715. 被引量:1
  • 4Ansari Q H,Schaible S,Yao J C.The system of generalized vector equilibrium problems with applications[J].J Global Optimization,2002,22(1-4):3-16. 被引量:1
  • 5Giannessi F.Theorems of alternative,quadratic programs and complementarity problems[C]//Cottle R W,Giannessi F,Lions J L.Variational Inequalities and Complementarity Problems.Chichester:Wiley,1980:151-186. 被引量:1
  • 6Li J,Huang N J,Kim J K.On implicit vector equilibrium problems[J].J Math Anal Appl,2003,283(2):501-512. 被引量:1
  • 7Zeng L C,Yao J C.An existence result for generalized vector equilibrium problems without pseudomonotonicity[J].Appl Math Lett,2006,19(12):1320-1326. 被引量:1
  • 8Park S,Kim H.Coincidence theorems for admissible multifunctions on generalized convex spaces[J].J Math Anal Appl,1996,197(1):173-187. 被引量:1
  • 9Ding X P.Maximal elements theorems in pruoduct FC-space and generalized games[J].J Math Anal Appl,2005,305(1):29-42. 被引量:1
  • 10Park S.On generalizations of the KKM principle on abstract convex spaces[J].Nonlinear Anal Forum,2006,11(1):67-77. 被引量:1

共引文献2

同被引文献15

  • 1Jia R Q. Approximation by quasi- projection operators in Besov spaces [ J ]. J Approx Theory ,2010,162 (1) :186 -200. 被引量:1
  • 2Cohen A, Daubechies I, Feauvean J C. Biorthogonal bases of compact/y supported wavelets[ J]. Commun Pure Appl Math, 1992, 45:485 - 560. 被引量:1
  • 3Dahmen W, Kunoth A, Urban K. Biorthogonal spline - wavelets on the interval - stability and moment conditions [ J ]. Appl Corn- put Harmon Anal, 1999 (6) : 132 - 196. 被引量:1
  • 4Primbs M. On the computation of Gramian matrices for refinable bases on the interval[ J ]. Inter J Wavelets, Muhiresolution and Information Proeessing ,2008,6 ( 3 ) :459 - 479. 被引量:1
  • 5Jia R Q. Spline wavelets on the interval with homogeneous boundary conditions[ J]. Adv Comput Math,2009 (30) :177 -200. 被引量:1
  • 6Jia R Q, Wang J Z, Zhou D X. Compactly supported wavelet bases for sobolev spaces [ J ]. Appl Comput Harmon Anal ,2003,15 : 224 - 241. 被引量:1
  • 7Donoho D L. Interpolatory Wavelet Transforms [ M ]. Preprint, 1992. 被引量:1
  • 8Devore R A, Lorentz G G. Constructive Approximation[ M ]. New York : Springer - Verlag, 1993. 被引量:1
  • 9Cohen A. Wavelet Methods in Numerical Analysis [ M ]. Amsterdam:Elsevier,2003. 被引量:1
  • 10Yong R K. Wavelet Theory and Its Applications[ M ]. Boston:Kluwer Academic Publishers, 1993. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部