期刊文献+

Ad Hoc认知网络中基于梯度算法的协作压缩频谱感知方法 被引量:4

Cooperative Compressed Spectrum Sensing for Cognitive Radio Ad Hoc Networks Based On Gradient-based Scheme
下载PDF
导出
摘要 ad hoc认知网络(CRAHNs)比起传统ad hoc网络有很多优势,如分布式多跳结构及动态变化的网络拓扑等。频谱感知是认知无线电技术的基础,采用压缩感知方法以低于奈奎斯特采样率的速率来获得较好的重构信号,同时可减轻数字处理设备的压力。本文使用多跳模型,每个认知用户感知的频谱不仅包括主用户的主频谱,也包括认知用户自身收到其他认知用户干扰的更新频谱。由于具有动态特性的ad hoc网络缺少融合中心,本文将基于梯度的分布式协作感知算法应用于CRAHNs。该算法基于能量检测,具有可靠的感知性能和较少的能量消耗,并能快速收敛。仿真实验验证了算法的有效性。 Cognitive radio ad hoc networks(CRAHNs) have several advantages over traditional ad hoc networks,like distributed multi-hop architecture,variant network topology and so on.Spectrum sensing is a foundation in the cognitive radio technology.We adopt the compressed sensing approach to attain high-resolution signal recovery at lower than Nyquist sampling rate.In this paper,we use the multi-hop architecture.Each CR sense its individual spectral map that consists of both common spectral components from primary users and individualized spectral innovations arising from interference of other CRs.CRAHNs are dynamic and have no central entity for data fusion.Therefore in this paper,we adopt a gradient-based distributed cooperative scheme in CRAHNs.The proposed scheme is based on energy detection.These distributed algorithms converge fast to the globally optimal solutions and have little energy consumption.Simulation results show the effectiveness of the proposed scheme.
机构地区 南京邮电大学
出处 《信号处理》 CSCD 北大核心 2012年第10期1402-1407,共6页 Journal of Signal Processing
基金 国家自然科学基金项目(60972039) 江苏自然科学基金(BK2010077)
关键词 认知无线电 ad HOC网络 压缩感知 分布式协作感知 基于梯度法 cognitive radios ad hoc networks compressed sensing distributed collaborative sensing gradient-based scheme
  • 相关文献

参考文献13

  • 1Haykin S,Thomson D J, Reed J H. Spectrum Sensing for Cognitive Radio [ J ]. Proceedings of the IEEE, 2009,97 (5) :849-877. 被引量:1
  • 2ET Docket Second Report and Order And Memorandum Opinion and Order[ C]. FCC. Nov. 2008 ,pp. 08-260. 被引量:1
  • 3I. F. Akylidz, W. Y Lee and K. R Chowdhury, "CRANS : Cognitive radio ad hoc networks, Ad hoc Networks"[ J ], July 2009,7(5 ) :810-836. 被引量:1
  • 4Cabricd,Mishera S M, Brodersen R W. lmplemenlation is- sues in spectrum sensing for cognitive radios[ C]. Confer- ence on Signals, Systems and Computers. 2004,1:772-776. 被引量:1
  • 5M. Gandetto, C. Regazzoni, "Spectrum sensing:a distribu- ted approach for cognitive terminals" [ J ]. IEEE Joumal on Selected Areas in Communications. 2007,25 (3) :546-557. 被引量:1
  • 6Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory,2006,52 (4) : 1289-1306. 被引量:1
  • 7Candies E, Romberg J, Tao T. Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Informa- tion Theory, 2006,52 ( 2 ) : 489-509. 被引量:1
  • 8Baraniuk R G. Compressive sensing[ J]. IEEE Signal Processing Magazine ,2007,24(4 ) : 118-121. 被引量:1
  • 9Peyre G. Best basis compressed sensing[ J ]. IEEE Trans- actions on Signal Processing ,2010, 58 ( 5 ) :2613-2622. 被引量:1
  • 10Z. Tian, " Compressed wideband sensing in cooperative cognitive radio networks" [ C ]. Proe. IEEE Global Tele- comm. Conf. ,2008,pp. 1-5. 被引量:1

同被引文献69

  • 1D. Malioutov, M. Cetion, and A. S. Willsky. A sparse signal reconstruction perspective for source localization with sensor arrays [ J ]. IEEE Transactions on Signal Pro- cessing, 2005, 53 (8) : 3010-3022. 被引量:1
  • 2I. J. Fevrier, S. B. Gelfand, and M. P. Fitz. Reduced complexity decision feedback equalization for muhipath channels with large delay spreads [ J ]. IEEE Transac- tions on Communication, 1999, 47 (6) :927-937. 被引量:1
  • 3Fanzi Zeng, Chen Li, and Zhi Tian. Distributed compres- sive spectrum sensing in cooperative muhihop cognitive networks [ J]. IEEE Journal of Selected Topics on Signal Processing, 2011, 5 ( 1 ) :37- 48. 被引量:1
  • 4D. L. Donoho. Compressed sensing [J]. IEEE Transac- tion on Information Theory, 2006, 52(4) :1289-1306. 被引量:1
  • 5E. van den Berg and M. P. Friedlander. Joint-sparse re- covery from multiple measurements, technical report [ R ]. Department of Computer Science, University of British Co- lumbia, 2009. 被引量:1
  • 6B. K. Natarajan. Sparse approximate solutions to linear systems [ J ]. SIAM. Journal on Computing. 24 (2) :227- 234. 被引量:1
  • 7S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit [ J ]. SIAM Jour- nal on Scientific Computing, 2001,43:129-159. 被引量:1
  • 8Joel A. Tropp and Anna C. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Transactions on Information Theory, 2007, 53 ( 12 ) :4655- 4666. 被引量:1
  • 9I. F. Gorodnitsky and B. D. Rao. Sparse signal recon- structions from limited data using FOCUSS: a re-weighted minimum norm algorithm [ J]. IEEE Transactions on Sig- nal Processing, 1997, 45(3) : 600-616. 被引量:1
  • 10Jie Chen and Xiaoming Huo. Theoretical results on sparse representations of multiple-measurement vectors [ J ]. IEEE Transactions on Signal Processing, 2006, 54(12) : 4634-4643. 被引量:1

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部