期刊文献+

基于分布式多引擎架构的网格工作流管理系统 被引量:6

A Grid Workflow Management System Based on Distributed Multi-Engine Framework
下载PDF
导出
摘要 主要研究面向服务的网格工作流管理系统,扩展了服务流程定义语言BPEL,使其支持将物理服务和虚拟服务作为原子服务参与构建工作流服务;提出了分布式多引擎系统架构;基于M/M/m排队模型,设计了负载均衡调度算法,能够在各引擎之间进行作业优化调度.实验结果表明,与集中式单引擎系统相比,分布式多引擎系统减少了作业平均响应时间,增强了系统负载能力和可靠性,提高了作业吞吐率和执行成功率,同时具备良好的可扩展性. Currently most grid workflow systems are built in a centralized single engine with low workload capacity, single point of failure and poor scalable performance. This paper describes ServiceFlow, a grid service-oriented workflow management system, which extends BPEL to support Web service, WSRF serv- ice and Virtual service participating in grid service composition, and adopts a distributed multi-engine framework, in which, based on M/M/m queuing model, load-balancing scheduling algorithms are pro- posed to dispatch jobs among engines. The results of performance evaluation show that ServiceFlow can a chieve shorter mean job response time, higher throughput and better dynamic scalability compared to the centralized single-engine workflow system.
作者 赵钢
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第11期100-107,共8页 Journal of Southwest University(Natural Science Edition)
基金 陕西教育厅基金资助项目(11JK0487)
关键词 网格工作流 M M m排队模型 负载均衡 作业调度 grid workflow M/M/m queuing model load balancing job scheduling
  • 相关文献

参考文献8

二级参考文献84

共引文献99

同被引文献47

  • 1余志龙,陈昱勋,郑名杰,等.Google Android SDK开发范例大全[M].3版.北京:人民邮电出版社,2011. 被引量:2
  • 2BUYYA R. High Performance Cluster Computing: Systems and Architectures [M]. Michigan: Prentice Hall PIN, 1999. 被引量:1
  • 3DESAI T, PRAJAPATI J. A Survey Of Various Load Balancing Techniques And Challenges In Cloud Computing [J]. International Journal of Scientific & Technology Research, 2013, 11 (2) : 158 - 161. 被引量:1
  • 4The clouds lab. CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services [EB/OL]. [2011-09-02]. http: // www. gridbus, org/ cloudsim/. 被引量:1
  • 5CHOI E. Performance Test and Analysis for an Adaptive Aoad Balancing Mechanism on Distributed Server Cluster Sys- tems [J]. Future Generation Computer Systems, 2004, 20(2): 237-247. 被引量:1
  • 6PING G, NING L J, SU L P, et al. A New Strategy of Resource Management for Cloud Computing [J]. Information Technology Journal, 2013, 12(17) : 3964-3969. 被引量:1
  • 7KATYAL M, MISHRA A. A Comparative Study of Load Balancing Algorithms in Cloud Computing Environment [J] International Journal of Distributed and Cloud Computing, 2013, 12(1): 5-14. 被引量:1
  • 8BRAUN T D, SIEGEL H J, BECK N, et al. A Comparison of Eleven Static Heuristics for Mapping a Class of Independ ent Tasks onto Heterogeneous Distributed Computing Systems [J]. Journal of Parallel and Distributed computing, 2001, 61(6) : 810-837. 被引量:1
  • 9SADHASIVAM S, NAGAVENI N, JAYARANI R, et al. Design and Implementation of an Efficient Two-Level Sched- uler for Cloud Computing Environment[C]//Advances in Recent Technologies in Communication and Computing, 2009. ARTCom '09. International Conference on, 2009: 884-886. 被引量:1
  • 10LIU G, LI J, XU J C. An Improved Min-Min Algorithm in Cloud Computing [C]//Proceedings of the 2012 Internation- al Conference of Modern Computer Science and Applications. Berlin: Springer, 2013: 47-52. 被引量:1

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部