期刊文献+

基于特征识别的3维人脸动画模型自动构造 被引量:7

The approach to automatically construct animation models based on 3D facial geometry and texture features recognition
原文传递
导出
摘要 针对3维人脸动画应用中,需要手工事先标定肌肉模型的控制点、工作区域和设置各种计算参数,造成工作量大、修改困难、移植性差等弊端,提出自动构造各种肌肉模型及确定它们计算参数的方法。研究工作包括:综合运用法向量变化率、高斯曲率、高斯纹理模型等参数研究3维人脸几何及纹理特征的快速检测方法;设计基于邻域生长和候选点聚类分析的识别算法来识别人脸五官部位的特征点;在此基础上,自动确定各种肌肉模型的位置结构、工作区域和计算参数,实现人脸动画所需的肌肉模型构造和装配的自动化。应用工作结果表明,基于特征识别的3维人脸动画肌肉模型自动构造方法移植性好、精度较高,提高了动画建模工作的效率。 Considering the work needed for constructing muscle models artificially, setting their control nodes, and adjusting their computer parameters, we present a method to construct the muscle model automatically and to generate the model calculation parameters for 3D facial animation. We developed a robust facial features recognition algorithm to extract the geometry and texture feature vertices. In the geometry feature recognition process, we adopt synthetically several constraints related to the Gaussian curvature and surface normal value to extract the candidate vertices. In the texture feature recognition process, we use the Gaussian Mixture Model of CrCgCb to extract the feature vertices. Then, clustering procedures are applied to gain the final feature vertices. Finally, using the 13 geometry feature vertices and 8 texture feature vertices extracted by the recognition algorithm, we automatically construct the muscle models for the real-time facial animation. The experimental results demonstrate a matching rate over 90% compared with the landmark vertices made by an artist. The application work indicates that the process of automated muscle model construction based on the feature recognition algorithm fit in with different human head geometries very well. On this basis, we synthesize a group of characteristic facial expressions and mouth shapes with higher realism in real time.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第12期1540-1547,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61170326 60873189) 深圳市基础研究项目(JC200903120088A JC201005250084A JC201005250052A)
关键词 人脸动画 人脸特征识别 肌肉模型构建 自动标定 facial animation, facial feature recognition, automatic animal modeling, automatic vertex tagging
  • 相关文献

参考文献15

  • 1Ekman P, Friesen W V. Measuring facial movementj L].Journal of Nonverbal Behavior, 1976, 1 ( I ) :56-75. 被引量:1
  • 2Blanz V, Vetter T. A morphable model for the synthesis of 3D faces [CJIIProceedings ofSIGGRAPH'99. Los Angeles, USA:Press, 1999: 187-194. 被引量:1
  • 3Ma W C,Jones A, ChiangJ Y, et al. facial performance syn?thesis using deformation-driven polynomial displace-ment maps [J]. ACM Transactions on Graphics, 2008,27 (5): 121-131. 被引量:1
  • 4Parke F I. Parameterized models for facial animation [J]. IEEE Computer Graphics and Applications, 1982, 2 (9) :61 -68. 被引量:1
  • 5Breton G, Bouville C, Pele D. faceEngine a 3D facial animation engine for real time applications [CJ IIProceedings of the Web3D. New York ,USA: ACM Press, 2001: 15-22. 被引量:1
  • 6Jorg H, Kolja K, Irene A, et al. Face to face: from real humans to realistic facial animation[CJIIProceedings of the 3rd lsrael?Korea Binational Conference on Geometrical Modeling and Com?puter Graphics. Seoul, Korea: IEEE Xplore, 2001: 73-82. 被引量:1
  • 7Terzopoulos 0, Waters K. Physically-based facial modeling, anal?ysis, and animation [J].Journal of Visualization and Computer Animation, 1990, 1(2): 73-80. 被引量:1
  • 8Lee Y C, Terzopoulos 0, Waters K. Realistic modeling for facial animation [CJ IIProceedings of the SIGGRAPH '95. New York, USA: ACM Press,1995: 552. 被引量:1
  • 9Choe B, Ko H S. Analysis and synthesis of facial expressions with hand-generated muscle actuation basis [CJ II Proceedings of IEEE Computer Animation Conference. Seoul, Korea: IEEE Computer Society Press,2001 : 12-19. 被引量:1
  • 10Waters K. A muscle model for animating three-dimensional facial expression [J]. Computer Graphics, 1987, 21 (4): 17 -24. 被引量:1

二级参考文献24

  • 1Albiol A, Torres L,Bouman C A, et al.A simple and efficient face detection algorithm for video database applications[C]//Proceedings of the IEEE International Conference on Image Processing, Sep 2000,2:239-242. 被引量:1
  • 2Tsapatsoulis N,Kollias A Y.Efficient face detection for multime- dia applications[C]//IEEE International Conference on Image Proceesing,Aug 2000,2:247-250. 被引量:1
  • 3de Dios J, Garcia N.Face detection based on a new color space YCgCr[C]//Proceedings of International Conference on Image Processing,2003(3) :909-912. 被引量:1
  • 4Hsu R L, Abdel-Mottaleb M, Jain A K.Face detection in color images[J].lEEE Transaction on Pattern Analysis and Machine Intelligence, 2002,24 (5) : 696-706. 被引量:1
  • 5Yang M H,Kriegman D J,Ahuja N.Detecting faces in images: A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24( 1 ) :34-58. 被引量:1
  • 6Li Qi, Ji Hong-bing.Face detection in complex background based on Gaussian models and neural networks[C]//Intemational Conference on Signal Proceesing,ICSP'06,Beijing,2006. 被引量:1
  • 7Mayer U F. Numerical solutions for the surface diffusion flow in three space dimensions[OL]. http://www.math.utah.edu/~mayer/math/Mayer07.pdf, 2001. 被引量:1
  • 8Desbrun M, Meyer M, Schroder P, et al. Implicit fairing of irregular meshes using diffusion and curvature flow[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, California, 1999. 317~324. 被引量:1
  • 9Desbrun M, Meyer M, Schroder P, et al. Discrete differential-geometry operators for triangulated 2-manifolds[A]. In: Visualization and Mathematics, Berlin, 2002. 52~58. 被引量:1
  • 10Dyn N, Hormann K, Kim S J, et al. Optimizing 3D triangulations using discrete curvature analysis[A]. In: Applied Mathematics Series Archive Mathematical Methods for Curves and Surfaces, Oslo, 2000. 135~146. 被引量:1

共引文献52

同被引文献55

  • 1Yang J,Frangi A F,Yang J,et aI.KPCA plus LDA:a com- plete kernel Fisher discriminant framework for feature extrac- tion and recognition[J].IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 2005,27(2) : 230-244. 被引量:1
  • 2Naseem I, Togneri R, Bennamoun M.Linear regression for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence02010,32( 11 ) :2106-2112. 被引量:1
  • 3Naseem I, Togneri R, Bennamoun M.Robust regression for face recognition[J].Pattern Recognition, 2012,45 ( 1 ) : 104-118. 被引量:1
  • 4Huang S M, Yang J F.Improved principal component regres- sion for face recognition under illumination variations[J]. IEEE Signal Processing Letters,2012,19(4) : 179-182. 被引量:1
  • 5马俊容.单训练样本条件下人脸识别技术研究[D].长沙:湖南大学,2009. 被引量:1
  • 6Prince S J D, Eider J H. Probabilistic linear discriminant analysis for inferences about identity. ICCV 2007. IEEE llth International Con- ference on, Computer Vision, 2007 : 1-8. 被引量:1
  • 7Li P, Fu Y, Mohammed U, et al. Probabilistic models for inference about identity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012; 34( 1 ): 144-157. 被引量:1
  • 8Kenny P. Bayesian speaker verification with heavy tailed pri- ors. Speaker and Language Recognition Workshop, Brno, Czech Republic, 2010. 被引量:1
  • 9Guillaumin M, Verbeek J, Schmid C. Is that you? Metric /earning approaches for face identification. 2009 IEEE 12th International Conference on. Computer Vision, 2009 : 498-505. 被引量:1
  • 10陈强.人脸图像的LBP特性及其识别性能研究.上海:华东师范大学,2012. 被引量:1

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部