期刊文献+

抗侧信道攻击的安全有效椭圆加密算法 被引量:7

Safe and effective elliptic encryption algorithm resistance against side-channel attack
下载PDF
导出
摘要 为防御椭圆曲线密码系统的侧信道攻击,针对椭圆曲线密码系统的侧信道攻击主要集中在对标量乘运算的攻击,提出了基于Width-w NAF的改进算法RWNAF(refined Width-wNAF)和FWNAF(fractional Width-w NAF),通过Masking技术隐藏密码算法的真实能量消耗信息,能有效地防御SPA、DPA、RPA与ZPA攻击;通过对密钥d的奇偶性分析,对预计算表进行优化,减少了存储需求和计算开销。FWNAF进一步利用碎片窗口技术,提高了存储资源的利用效率,同时也减少了由于系统资源急剧变化而引发的系统计算性能的抖动现象。 For defensing side-channel attacks about elliptic curve cryptosystem and in view of SCA on elliptic curve cryptosystem mainly concentrated on scalar operation,this paper proposed RWNAF(refined Width-w NAF) and FWNAF(fractional Width-w NAF) with pre-computed table,which was intends to resist SPA,DPA,RPA and ZPA essentially.It utilized Masking technology to thwart those attacks,meanwhile it optimized pre-computed table by the characteristic of the even and odd scalar.Further FWNAF utilized the fragments window technology,improving utilization ratio of the storage resource,also reducing system computing performance "jitter" by the system resources sharp change caused.
作者 姚剑波 张涛
出处 《计算机应用研究》 CSCD 北大核心 2012年第12期4639-4643,共5页 Application Research of Computers
基金 贵州省优秀科技教育人才省长专项资金资助项目(黔省专合字(2009)27号) 遵义市科学技术基金资助项目(遵市科合社字[2010]11号)
关键词 侧信道攻击 椭圆曲线密码系统 Width-w NAF RWNAF FWNAF side-channel attack elliptic curve cryptosystem Width-w non-adjacent form(Width-w NAF) refined Width-w NAF(RWNAF) fractional Width-w NAF(FWNAF)
  • 相关文献

参考文献9

  • 1KOBLITZ N. Elliptic curve cryptosystems [ J ]. Mathematics of Computation, 1987,48:203-209. 被引量:1
  • 2MILLER V. Uses of elliptic curves in cryptography [ C ]//Proe of CRYPTO' 85. New York : Springer-Verlag,1986:417-426. 被引量:1
  • 3周永彬,徐秋亮.侧信道攻击理论与技术[M].中国密码学发展报告2008.北京:电子工业出版社,2009:191-259. 被引量:1
  • 4张金中,寇应展,陈财森,田军舰.二进制方法点乘的椭圆曲线密码故障攻击[J].计算机工程,2011,37(20):100-102. 被引量:6
  • 5翁江,豆允旗,马传贵.智能卡上椭圆曲线标量乘差分错误分析攻击研究[J].信息工程大学学报,2011,12(6):660-665. 被引量:2
  • 6MAMIYA H. Efficient countermeasures against RPA, DPA and SPA [C]//Proc of Cryptographic Hardware and Embedded System. 2004 : 343-356. 被引量:1
  • 7MOLLER B. Improved techniques for fast exponentiation [ C ]//Proc of ICISC. 2002:298-312. 被引量:1
  • 8CORON J. Resistance against differential power analysis for elliptic curve cryptosystems [ C ]//Proc of CHES' 99. 1999:292- 302. 被引量:1
  • 9OKEYA K. A more flexible countermeasure against side channel attacks using window method [ C ]//Proc of Cryptographic Hardware and Embedded System. 2003:397-410. 被引量:1

二级参考文献23

  • 1Boneh D, DeMillo R A, Lipton R J. On the Importance of Checking Cryptographic Protocols for Faults[C]//Proceedings of EUROCRYPT’97. [S. 1.]: Springer-Verlag, 1997: 512-525. 被引量:1
  • 2Biehl I, Meyer B, Mller V. Differential Fault Attacks on Elliptic Curve Cryptosystems[C]//Proceedings of CRYPTO’00. [S. 1.]: Springer-Verlag, 2000: 131-146. 被引量:1
  • 3Antipa A, Brown D R L, Menezes A, et al. Validation of Elliptic Curve Public Keys[C]//Proceedings of the 6th International Workshop on Theory and Practice in Public Key Cryptography. [S. 1.]: Springer-Verlag, 2003: 211-223. 被引量:1
  • 4Fouque P A, Lercier R. Fault Attack on Elliptic Curve with Montgomery Ladder Implementation[C]//Proceedings of FDTC’08. [S. 1.]: IEEE Computer Society, 2008: 92-98. 被引量:1
  • 5Chilikov A. New Fault Attack on Elliptic Curve Scalar Multiplica- tion[EB/OL]. (2009-10-21). http://eprint.iacr.org/2009/528. 被引量:1
  • 6Bl?mer J, Otto M, Seifert J P. Sign Change Fault Attacks on Elliptic Curve Cryptosystems[C]//Proceedings of FDTC’06. [S. 1.]: Springer-Verlag, 2006: 36-52. 被引量:1
  • 7Koblitz N. Elliptic Curve Cryptosystems [ J ]. Mathematics of Computation, 1987, 48 ( 5 ) :203-209. 被引量:1
  • 8Miller V. Uses of Elliptic Curves in Cryptography[ C]//Advances in Cryptography-Proceedings of CRYPTO' 85. New York: Spfinger-Verlag, 1986:417-426. 被引量:1
  • 9ANSI. xg. 62-1999. Public Key Cryptography for the Financial Services Industry. The Elliptic Curve Digital Signature Algo- rithm. Washington: American National Standards Institute[ S]. 1999. 被引量:1
  • 10ANSI. X9.63-2000. Public Key Cryptography for the Financial Services Industry. Elliptic Curve Key Agreement and Key Transport Protocols. Washington: American National Standards Institute[ S]. 2000. 被引量:1

共引文献5

同被引文献57

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部