摘要
We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.
We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.10971226,91130013,and 11001270)
the National Basic Research Program of China(Grant No.2009CB723802)
the Research Innovation Fund of Hunan Province,China (Grant No.CX2011B011)
the Innovation Fund of National University of Defense Technology,China(Grant No.B120205)