期刊文献+

应用灰度共生矩阵的纹理特征描述的研究 被引量:11

Investigation of the Textual Description Based on Gray Level Co-occurrence Matrix Measurements.Computer Engineering and Applications
下载PDF
导出
摘要 研究一种基于灰度共生矩阵常规量度的纹理特征描述方法。在遥感图像上截取纹理均匀的小图像,进行各种变换,并应用Matlab软件求得其灰度共生矩阵与各个量度值。将已有灰度共生矩阵量度进行线性组合,针对不同样本借助测量平差的方法得出一个新的目标参量的线性表达式模型。选择能够识别样本纹理特征的线性组合形式计算其值。提取所需的纹理特征并用Matlab软件对图像进行计算验证结果。将此方法运用于遥感图像后,可区分出不同的纹理特征。 A kind of description of texture based on the common measurements of the Gray Level Co-occurrence Matrix is mainly investigated. After cutting out the small samples from the images of satellites and conducting the transformations, it calculated the matrix and measurements of the samples via using Matlab. This description creates an objective parameter that is a linear combination of the given measurements and can get different results according to the different texture samples. After a model of objective parameter chosen by measurement adjustment the programming is carried out to test the effectiveness of the description. This description can be adapted to distinct textures.
出处 《科学技术与工程》 北大核心 2012年第33期8909-8914,共6页 Science Technology and Engineering
关键词 纹理特征 共生矩阵量度 目标参量 测量平差 MATLAB texture the measurements of the gray level co-occurrence matrix objection parameter measurement adjustment matlab
  • 相关文献

参考文献6

二级参考文献20

  • 1张仁霖.信息论向测绘科学的渗透[J].测绘科技动态,1994,55(2):28-31. 被引量:2
  • 2袁升兴.误差及不确定度[J].郑州工学院学报,1995,16(1):108-113. 被引量:3
  • 3林宗坚,张永红.遥感与地理信息系统数据的信息量及不确定性[J].武汉大学学报(信息科学版),2006,31(7):569-572. 被引量:27
  • 4Jafari-Khouzani K, Soltanian-Zadeh H. Radon transform orientation estimation for rotation invariant texture analysis[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 ( 6 ) : 1004 - 1008. 被引量:1
  • 5Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7) : 971 -987. 被引量:1
  • 6Heikkila M, Pietikaiinen M. A texture-based method for modeling the background and detecting moving objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662. 被引量:1
  • 7Gordan N J, Salmond D J, Smith A F M. A novel approach to nonlinear/non-Gaussian Bayesian state estimation[ J]. IEEE Proceedings - F, 1993, 140 (2) : 107 - 113. 被引量:1
  • 8Nummiaro K, Meier E K, GoolL J V. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003, 21 ( 1 ) : 99 - 110. 被引量:1
  • 9Doucet A, Freitas N D, Gordon N J. Sequential Monte Carlo methods in practice [ M ]. New York: Springer- Verlag Press, 2001. 被引量:1
  • 10Arulampalam M S, Maskell S, Gordon N J, et al. A tutorial on particle filters for on-line non-linear/ non- Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2) : 174 - 188. 被引量:1

共引文献111

同被引文献162

引证文献11

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部