期刊文献+

独立分量分析盲信号分离方法研究 被引量:3

Researchon Independent Component Analysis of Blind Signal Separation
下载PDF
导出
摘要 盲源分离是指从多个相互独立的源信号的混合信号中分离出源信号来。独立分量分析法是盲源分离的一种新方法,由于其在语音信号处理、阵列信号处理、生物医学信号处理、移动通信及图象处理等领域的应用前景,越来越引起人们的关注,成为研究的热点。介绍一种基于四阶累积量的非高斯性最大化的ICA算法解决盲源分离的问题,并给出了该算法分离通信信号的计算机仿真结果,验证了算法的有效性。 BSS means separating the statistically independent source signals from their mixture. Independent component analysis (ICA) is a new method of blind source separation. It has attracted great attention and has been an attractive trend because of its poten-tial application in signal processing such as speech signal processing, array signal processing,biological and medical signal processing, and wireless communication and image processing. A non-Gaussian maximization ICA algorithm based on fourth-order cumulants is introduced. And the simulation results of communication signal separation are given. The results show that the algorithm is effective.
出处 《无线电工程》 2012年第12期30-32,共3页 Radio Engineering
关键词 盲信号处理 盲源分离 独立分量分析 blind signal processing blind source separation independent component analysis (ICA)
  • 相关文献

参考文献6

二级参考文献10

共引文献85

同被引文献40

  • 1刘亚东,周宗潭,胡德文,颜莉蓉,谭长连,吴大兴,姚树桥.大脑fMRI数据时/空模式综合分析的一种新方法[J].中国科学(E辑),2004,34(10):1139-1147. 被引量:5
  • 2张杰,廖桂生,王珏.对角加载对信号源数检测性能的改善[J].电子学报,2004,32(12):2094-2097. 被引量:30
  • 3李立峰,张建立.基于盲信号分离的高分辨测向算法研究[J].电子对抗,2006(1):1-5. 被引量:4
  • 4Maldjian J A, Laurienti P J, Kraft R A, et al. An Automated Method for Neuroanatomic and Cyto- architectonic Atlas-based Interrogation of fMRI Data Sets [ J ]. Neurolmage, 2003,19 ( 3 ) : 1233-1239. 被引量:1
  • 5Friston K J. Modes or Models: A Critique on Indepen- dent Component Analysis for fMRI [ J ]. Trends in Cognitive Science, 1998,2 (10):373-375. 被引量:1
  • 6Beckmann C F, DeLuca M, Devlin J T, et al. Investigations into Resting-state Connectivity Using Independent Component Analysis [ J ]. Philosophical Transactions of The Royal Society B: Biological Sciences ,2005,360( 1457 ) : 1001-1013. 被引量:1
  • 7Li Yuanqing, Namburi P, Yu Zhuliang, et al. Voxel Selection in fMRI Data Analysis Based on Sparse Representation [ J ]. IEEE Transactions on Biomedical Engineering ,2009,56(10) :2439-2451. 被引量:1
  • 8Yamashita O, Sato M, Yoshioka T, et al. Sparse Estimation Automatically Selects Voxels Relevant for the Decoding of fMRI Activity Patterns [ J ]. Neurolmage, 2008,42 (4) : 1414-1429. 被引量:1
  • 9Desco M,Hernandez J, Santos A, et al. Multiresolution Analysis in fMRI: Sensitivity and Specificity in the Detection of Brain Activation [ J ]. Human Brain Mapp- ing ,2001,14 ( 1 ) : 16-27. 被引量:1
  • 10Breakspear M, Bullmore E T, Aquino K, et al. The Multiscale Character of Evoked Cortical Activity [ J ]. Neurolmage ,2006,30 (4) :1230-1242. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部