期刊文献+

On the Behavior of Certain Turing System

On the Behavior of Certain Turing System
下载PDF
导出
摘要 The generalized maximum principle of Lou and Ni is extended from elliptic equations to parabolic equations. By this result, one can show that the system of fugal mycelia has a global attractor if the diffusion coefficient D = 0 and the solution blows up ifD= 0. The method of linearization is applied to derive the existence of Hopfs bifurcation which is the signature of instability of Turing system. The increasing of the size of the attractor and the existence of Hopf' s bifurcation indicate that there is a threshold that initiates the instability.
出处 《Journal of Mathematics and System Science》 2012年第6期393-397,共5页 数学和系统科学(英文版)
关键词 Global attractor Hopf's bifurcation blow-up solution periodic solutions. 系统 图灵 Hopf分岔 行为 抛物型方程 椭圆型方程 扩散系数 不稳定
  • 相关文献

参考文献9

  • 1F.A. Davidson, B.D. Sleeman, J.W. Crawford, Travelling waves in a reaction-diffusion system modeling fungal mycelia, IMA Journal of Applied Mathematics 58 (1997) 237-257. 被引量:1
  • 2A. Gierer, Generation of biological patterns and form: Some physical, mathematical and logical aspects, Progress in Biophysics and Molecular Biology 37 (1981) 1-47. 被引量:1
  • 3H. Meinhardt, Models of Biological Pattern Formation, London Academic Press, London, 1982. 被引量:1
  • 4Y. Lou, W.M. Ni, Diffusion, self-diffusion and cross-diffusion, Journal of Differential Equations 131.(1996) 79-131. 被引量:1
  • 5A.M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society B 237 (1952) 37-72. 被引量:1
  • 6T. Kolokolnikova, T. Emeuxa, J. Weib, Mesa-type patterns in the one-dimensional Brusselator and their stability, Physica D 214 (2006) 63-77. 被引量:1
  • 7P. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer-Verlag, Berlin, Heidelberg, New York, 1979. 被引量:1
  • 8J.D. Murray, Mathematical Biology, Springer-Verlag, Berlin, Heidelberg, New York, 1993. 被引量:1
  • 9Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer-Verlag, New York, 2001. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部