期刊文献+

铈掺杂LiFePO_4的电化学性能研究 被引量:2

Structure and Electrochemical Properties of Ce-doped Lithium Iron Phosphate
下载PDF
导出
摘要 以Ce为掺杂源,蔗糖为碳源,利用溶胶-凝胶法合成了LiFe1-xCexPO4/C正极材料,并采用SEM、XRD、EIS等分析方法重点考察了不同Ce掺杂量及Ce掺杂同时碳包覆样品的结构及电化学性能。结果表明,所制备的样品均为橄榄石结构,颗粒粒径明显细化。电化学性能测试表明,Ce掺杂量为1%(摩尔分数)时性能最佳,0.1C(C为倍率)放电,其容量可达153.1mAh/g,50次循环后容量保持96.7%;既掺Ce又包覆碳的效果更好,0.1C下其容量可达162.4mAh/g,50次循环后容量几乎没有衰减,1C时其容量可达109mAh/g,表现了良好的倍率性能。EIS测试表明,Ce的掺杂可以明显改善电极表面电化学反应的动力学性能,降低电极/电解液界面电荷转移电阻,Ce掺杂同时碳包覆样品的改善效果更为明显。 LiFe1-x CexPO4/C cathode materials were synthesized by the sol gel method using Ce as the dopant source and sucrose as carbon source. Microstructure and electrochemical proper ties of LiFePO4 were investigated using XRD, SEM and EIS measurements. All the samples had the crystal structure of olivine. The particles of synthesized LiFePO4 were fine and homogeneous in size. The electrochemical test shows that the doping of Ce increased the discharge capacity and improved the cycle performance. The research suggests that LiFe0.99 Ce0.01 PO4 exhibited a rela- tively good rate capability and cycling stability. At 0.1C the discharge capacity was 153.1 mAh/ g. After 50 cycles, its discharge capacity remained at 148.0 mAh/g. The discharge capacity of LiFe0.99Ce0.01PO4/C was the best. At 0.1C the discharge capacity was 162.4 mAh/g. The EIS test demonstrates that the doping of Ce improved the cycle performance of the sample, decreased the charge transfer resistance Rct.
出处 《太原理工大学学报》 CAS 北大核心 2012年第6期641-645,650,共6页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(20676088) 山西省自然科学基金资助项目(20091402110009)
关键词 磷酸铁锂 溶胶-凝胶法 稀土金属 掺杂改性 碳包覆 lithium iron phosphate sol-gel carbon coated doping modification
  • 相关文献

参考文献6

二级参考文献65

共引文献48

同被引文献43

  • 1李玥,赵海雷,仇卫华,李雪.二次锂离子电池负极材料Li_4Ti_5O_(12)的研究进展[J].硅酸盐通报,2007,26(1):92-96. 被引量:6
  • 2Scrosati Bruno, Garche Jiirgen Garche. Lithium batteries= status, prospects and future[J].Journal of Power Sources, 2010, 195: 2419 -2430. 被引量:1
  • 3Jansen A N, Kahaian A J, Kepler K D, et al. Development of a high-power lithium-ion battery[J]. Journal of Power Sources, 1999(81/82): 902-905. 被引量:1
  • 4Ohzuku T, Ueda A, Yamamota N. Zero-strain insertion material of Li[Lil/3Tis/3]O4 for rechargeable lithium cells[J]. Jour- nal of Electrochem Soc, 1995, 142(5): 1431-1435. 被引量:1
  • 5Takai S, Kamata M, Fujine S,et al. Diffusion coefficient measurement of lithium ion in sintered LiLaaTil. 6704 by means of neutron radiography[J~. Solid State Ionics, 1999, 123(1-4): 165-172. 被引量:1
  • 6Chen C H, Vaughey J T, Jansen A N,et al. Studies of Mg-Substituted Li4-xMgxTisO12 Spinel Electrodes (0≤x≤1) for lithium batteries[J]. Journal of the Electrochemical Society, 2001, 148(1): A102-A104. 被引量:1
  • 7Gao J, Ying J R, Jiang C Y,et al. Preparation and characterization of spherical La-doped Li4 TisO12 anode material for lithi- um ion hatteries[J]. Ionics, 2009,15(5):597-601. 被引量:1
  • 8Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701. 被引量:1
  • 9Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical re- views,1995, 95(1) : 69-96. 被引量:1
  • 10Wang W, Lu C, Ni Y, et al. Preparation and characterization of visible-light-driven N-F-Ta tri-doped TiO2 photocatalysts [J]. Applied Surface Science, 2012,258(22):8696-8703. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部