期刊文献+

火焰筒压力损失对点火特性的影响 被引量:11

Effects of liner pressure loss on combustor ignition performances
原文传递
导出
摘要 以3.0%火焰筒压力损失火焰筒作为基准,分别设计了2.5%和2.0%火焰筒压力损失的火焰筒,通过试验研究火焰筒压力损失对地面起动点火性能的影响,对火焰筒内部流场进行数值模拟.在火焰筒压力降3.0%以内的空气条件下,3种方案贫油点火边界基本一致,低压力损失火焰筒能够在更宽的压力降条件下点燃,2.5%方案的综合点火性能最好.结合数值模拟结果:压力损失降低至2.0%,流场结构与基准方案有较大的区别,对燃烧室的性能开始产生不利影响,2.5%方案与基准方案流场结构较为接近,定量的变化对燃烧室的性能影响是有益的. Based on a combustor of 3.0% liner pressure loss,two low pressure loss liners(2.5% and 2.0%) were designed.The light lean ignition experiments and numerical simulation were conducted to study the effect of liner pressure loss on the combustor ignition performance.On the condition of pressure drop less than 3%,the ignition performances were almost the same.On the condition of pressure drop greater than 3%,the ignition performances of low liner pressure loss were better than that of the baseline liner,and 2.5% pressure loss liner was the best of the overall ignition performance.Combined with numerical simulation results,the flow structure of liner of 2.0% pressure loss was significantly different from that of the baseline liner,which had a negative effect on the performance of ignition.The flow structure of liner of 2.5% pressure loss was similar with that of the baseline liner,which had a positive effect on the performance of ignition.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2012年第10期2229-2235,共7页 Journal of Aerospace Power
关键词 燃气轮机燃烧室 燃烧室设计 火焰筒压力损失 地面点火特性 贫油边界 gas turbine combustor combustor design liner pressure loss ignition performance lean ignition boundary
  • 相关文献

参考文献14

  • 1沈维道等编..工程热力学[M].北京:高等教育出版社,1982:440.
  • 2金如山著..航空燃气轮机燃烧室[M].北京:宇航出版社,1988:509.
  • 3Lefebvre A H, Ballal D R. Gas turbine combustion, alternative fuels and emission, third edition edition[M]. Boca Raton:Taylor & Francis,2010. 被引量:1
  • 4Williams F A. Combustion theory[M]. 2版.庄逢辰,杨本濂,译.北京:科学出版社,1990. 被引量:1
  • 5林宇震,许全宏,刘高恩著..燃气轮机燃烧室[M].北京:国防工业出版社,2008:288.
  • 6胡正义.航空发动机设计手册:第9册[M].北京:航空工业出版社,2000. 被引量:2
  • 7彭云晖,林宇震,许全宏,刘高恩.双旋流空气雾化喷嘴喷雾、流动和燃烧性能[J].航空学报,2008,29(1):1-14. 被引量:56
  • 8Ballal D R,Lefebvre A H. Ignition of liquid fuel sprays at subatmospheric pressures [J]. Combustion and Flame, 1978,31(2) :115-126. 被引量:1
  • 9Rao H N S,Lefebvre A H. Ignition of kerosene fuel spray in a flowing air stream[J]. Combustion Science and Technology, 1973,8(1/2) :95-100. 被引量:1
  • 10Rao K V L, Lefebvre A H. Minimum ignition energies in flowing kerosene-air mixture[J]. Combustion and Flame, 1976,27 : 1-20. 被引量:1

二级参考文献31

  • 1[2]Fu Y,Cai J,Jeng S M,et al.Confinement effects on the swirling flow of a counter-rotating swirl cup[R].ASME 2005-GT-68622,2005. 被引量:1
  • 2[3]Jeng S M,Flohre N M,Mongia H C.Swirl cup modeling-atomization[R].AIAA 2004-137,2004. 被引量:1
  • 3[4]Mongia H C,Al-Roub M,Danis A,et al.Swirl cup modeling part I[R].AIAA 2001-3576,2001. 被引量:1
  • 4[5]Hsiao G,Mongia H C,Vij A.Swirl cup modeling part II:inlet boundary conditions[R].AIAA 2003-1350,2003. 被引量:1
  • 5[6]Hsiao G,Mongia H C.Swirl cup modeling part III:grid independent solution with different turbulence models[R].AIAA 2003-1349,2003. 被引量:1
  • 6[7]Cai J,Fu Y,Elkadi A,et al.Swirl cup modeling part IV:effect of confinement on flow characteristics[R].AIAA 2003-0486,2003. 被引量:1
  • 7[8]Wang S,Yang V,Mongia H C,et al,Modeling of gas turbine swirl cup dynamics,part V:large eddy simulation of cold flow[R].AIAA 2003-0485,2003. 被引量:1
  • 8[9]Giridharan M G,Mongia H C.Swirl cup modeling part VI:dilution jet modeling[R].AIAA 2003-1203,2003. 被引量:1
  • 9[10]Stevens E J,Held T J,Mongia H C.Swirl cup modeling part VII:partially-premixed laminar flamelet model validation and simulation of a single-cup combustor with gaseous n-heptane[R].AIAA 2003-0488,2003. 被引量:1
  • 10[11]Stevens E J,Held T J,Mongia H C.Swirl cup modeling part VIII:spray combustion in CFM-56 single cup flame tube[R].AIAA 2003-0319,2003. 被引量:1

共引文献56

同被引文献111

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部