摘要
研究了拓扑结构为连通无向图与连通二分图的一阶时延多智能系统分别在两类控制协议下的分组一致性问题.基于广义Nyquist准则与频域控制理论的方法,分析并得到了多智能体系统渐进分组收敛一致的充分条件.通过该条件发现系统分组一致性的达到与系统的时延以及智能体间的耦合强度相关.同时,时延的大小影响着系统的收敛速度与动态性能.仿真实验的结果进一步验证了理论分析所得结论的正确性.
In this paper, a new consensus problem is investigated which is group consensus. It contains such consensus problem as a spe- cial case that all agents in a network reach a consistent value asymptotically. Consider a dynamic multi-agent system with connected undirected or connected bipartite graph topology and delays, two novel consensus protocols are introduced to solve the group con- sensus problem. The convergence analysis is discussed and the sufficient condition for system group convergence is obtained based on the frequency-domain analysis and generalized Nyquist criterion, respectively. And we know that the condition of group conver- gence is only depended on system's time delay and the adjacent weight between the agents, meanwhile, delay can affect the dynamic characteristics of the system. Finally, simulations are provided to demonstrate the effectiveness of our theoretical results.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2012年第22期5-12,共8页
Acta Physica Sinica
基金
国家自然科学基金(批准号:60973114
61170249)
重庆市科委自然科学基金(批准号:2009BA2024
cstc2011jjA1320)
重庆大学输配电装备及系统安全与新技术国家重点实验室基金(批准号:2007DA10512711206)资助的课题~~
关键词
多智能体
分组一致性
时延
收敛
multi-agent, group consensus, time delay, convergence