期刊文献+

基于压缩感知的多基地无源雷达成像算法 被引量:3

Passive Multistatic Radar Imaging Algorithm Based on Compressed Sensing
下载PDF
导出
摘要 由于成像场景可稀疏表示(场景中仅有少数强散射点),针对外辐射源信号波长长,带宽窄的特点,本文提出了基于压缩感知的多发单收无源雷达成像算法,该算法由符合图像统计特性的先验信息构造合理的傅里叶基矩阵,利用lp范数法将带约束条件强散射点增强问题转换为最优化问题,并通过迭代算法快速获得最优解。实验仿真结果表明小转角情况下,本文算法无需充足站点数目,并且能获得较好成像效果。 Passive multistatic radar imaging algorithm is proposed on the basis of compressed sensing since a image scene usually has a few scattering centers. First, this method is used to construct a reasonable Fourier sparse basis matrix via the prior information constrained by the statistical property of SAR image. Then, the point-enhanced problem is transformed into the optimization problem by the using lp norm method. Finally, a fast recursive algorithm is presented to solve the optimization problem. Numerical simulation shows the method has good imaging performance without the request of enough stations under the location of small rotating angle.
出处 《宇航学报》 EI CAS CSCD 北大核心 2012年第11期1681-1689,共9页 Journal of Astronautics
基金 国家自然科学基金(60672075) 国家部委基金(9140A07010311BQ02) 教育部博士点基金(20113219110018) 南京理工大学自主科研专项计划资助项目(2010ZDJH05)
关键词 无源雷达成像 多基地雷达 稀疏 压缩感知 Passive radar imaging Muhistatie radar Sparsity Compressed sensing
  • 相关文献

参考文献10

  • 1Howland P. Television-based bistatic radar [ D ]. UK : School of Electronic and Electrical Engineering, University of Birmingham, 1997. 被引量:1
  • 2Wu Y, Munson D C. Muhistatic synthetic aperture imaging of aircraft using reflected television signals [ C ]. Proceeding of SPIE, Algorithms for Synthetic Aperture Radar Imagery VIII,Orlando, FL, 2001,4382 : 1 - 12. 被引量:1
  • 3Lantem~an A D, Munson D C, Wu Y. Wide-angle radar imaging using time-frequency distributions [ J ]. IEE Proceedings Radar Sonar & Navigation, 2003, 150(4) : 203 -211. 被引量:1
  • 4张馨文,王俊.基于多电视台子孔径综合的无源雷达成像算法[J].电子与信息学报,2007,29(3):528-531. 被引量:17
  • 5Donoho D L. Compressed sensing [ J]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289 - 1306. 被引量:1
  • 6何劲,张群,杨小优,罗迎,张辉,朱小鹏.基于压缩感知理论的合成孔径激光雷达成像算法[J].宇航学报,2011,32(11):2395-2402. 被引量:8
  • 7Berger C R, Zhou S L, Willett P, et al. Compressed sensing for OFDM/M1MO radar [ C ]. 2008 42rid Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Oct. 2008:213 - 217. 被引量:1
  • 8Berger C R, Demissie B, Heckenbach J, et al. Signal processing for passive radar using OFDM waveforms [ J ]. IEEE Journal of Selected Topics in Signal Processing ,2010,4( 1 ) :226 -238. 被引量:1
  • 9Potter L C, Parker J T. Sparsity and compressed sensing in Radar Imaging[J]. The IEEE, 2010, 98(6) : 1006 -1020. 被引量:1
  • 10Samadi S, Cetin M, Shirazi M. Sparse representation-based SAR imaging[J]. IEE Proceedings Radar Sonar & Navigation, 2011, 5(2) : 182 -193. 被引量:1

二级参考文献21

  • 1张云,吴谨,唐永新.合成孔径激光雷达[J].激光与光电子学进展,2005,42(7):48-50. 被引量:26
  • 2He J, Luo Y, Feng T A, et a]. inverse synthetic imaging lidar: no targets can hide[ C]. WSANE, Shanghai, China, Nov 177 - 181, 2009. 被引量:1
  • 3Bashkansky M, Lucke R L, Funk E, et al. Two dimensional synthetic aperture imaging in the optical domain [ J]. Opt Letter, 2002, 27(22) : 1983 -1985. 被引量:1
  • 4Cand~s E J. The restricted isometry property and its implications for compressed sensing[ J]. Academic Des Sciences, 2006, 346 (1): 598-592. 被引量:1
  • 5Donoho D L. Compressed sensing [ J ]. IEEE Trans. Inf. Theory, 2006, 52(4): 1289- 1306. 被引量:1
  • 6Stephen M, Colella B D, Thomas J G. Solid-state laser synthetic aperture radar[J]. Appl. Opt. 1994, 33(6): 960 -964. 被引量:1
  • 7Walter F B, Nicholas J M, Steven M B. Synthetic aperture imagingladar[J]. Proc. SPIE, 2005, 22 (5): 661 -668. 被引量:1
  • 8Baraniuk R. A lecture on compressive sensing[ J]. IEEE Signal Processing Magazine, 2007, 24(4) :118 -121. 被引量:1
  • 9Shi G M, Lin J, Chen X Y, et al. UWB echo signal detection with ultra-low rate sampling based on compressed sensing [ J]. IEEE Trans. on Circuits and Systems -Ⅱ : Express briefs, 2008, 55(4) : 379 -383. 被引量:1
  • 10Howland P E.Target tacking using television-based radar.IEE Proc.-Radar,Sonar Navig,1999,146(3):166-174. 被引量:1

共引文献23

同被引文献36

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部