期刊文献+

基于自适应距离的等距映射 被引量:1

Isometric mapping based on adaptive distance
下载PDF
导出
摘要 等距映射是一种非监督的流形学习算法,对于已知先验类别信息的数据,其降维效果不理想。同时,对于新加入的数据点的降维,计算复杂度过高,不适合实时应用。针对这两点不足之处,提出一种推广的自适应等距映射算法,通过引入自适应距离因子并结合推广的等距映射可实现有效降维。ORL人脸数据库的实验表明,该算法在人脸的识别率和实时性上有明显的提高。 Isometric mapping(ISOMAP) is a classic unsupervised algorithm of manifold learning.However,ISOMAP could not work well for the data with the class priori information.Moreover,dimension reduction to the new data point using ISOMAP is computationally too complex to be used in real time.Given the drawbacks of ISOMAP,an adaptive distance generalization of ISOMAP(ADGI) is proposed,in which the adaptive distance factor is introduced to combine with generalization of ISOMAP.The ADGI is effective in the dimension reduction of face features.Experiments on ORL database show the presented algorithm is better both in recognition ratio and in real time for face recognition.
出处 《中国科技论文》 CAS 北大核心 2012年第10期796-798,808,共4页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20100185120021) 中央高校基本科研业务费资助项目(ZYGX2009X003 ZYGX2009Z005) 电子科技大学青年科技基金重点项目(JX0804)
关键词 流形学习 等距映射 自适应距离等距映射 manifold learning ISOMAP ADGI
  • 相关文献

参考文献7

  • 1Teenbattm J B, Silva V D, Langford J C. A global framework for nonlinear dinmionality reduction [J]. Science, 2000, 290(22): 2319-2323. 被引量:1
  • 2Rowels S T, Saul L IL Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(22): 2323-2325. 被引量:1
  • 3Setmg H S, Lee D D. The manifold ways ofpew.elYdOn [J]. Science, 2000, 290( 22): 2268-2269. 被引量:1
  • 4Belkin M, Niyogi P. I.zplacian eigenmaps for Tasionality reduction and dataon [J].Netnal Comput, 2003,15(6): 1373-1396. 被引量:1
  • 5Z/rang Zlyue, Zha Hongyuan. Principal manifolds and nonlinear dimension re-fion via local tangent space aliment [J]. SlAM J Sci Comput, 2004, 26(1): 313-318. 被引量:1
  • 6V'mehos M, C, KoUios Get a[. Non-linear dimensionality reduction thniques for classification ad vimmliz'on[C] // Proc 8th, ACM SIGKDD Int Conf Knowledge Discovery and Data Mining Edmonton, AB, Canada, 2(112: 645-651. 被引量:1
  • 7Geng Xin, Zlaan Daum, Zlaou Zhihua. Supervised nalinear dimensionality reduclion for visualizalion and classification [J]. IEEE Trans Syst Man Cy B, 2005, 35(6): 1098-1107. 被引量:1

同被引文献27

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部