期刊文献+

一种基于拉普拉斯矩阵的在线社会网络社区发现算法 被引量:3

Community Discovery Algorithm Based on Laplacian Matrix in Social Networks
下载PDF
导出
摘要 Web媒体被公认为继报纸、广播、电视之后的"第四媒体"。而Web2.0的迅速普及,又使当今的Web媒体呈现了一种"自媒体"形式,即每个用户既是信息的接受者,也是信息发布者和信息转发者,因此,在当今的Web上形成了在线社会网络。研究表明在线社会网络呈现出一种很强的"模块性"("社区性"),因此,在在线社会网络中,社区发现一直是一个研究热点,即如何设计算法以发现大规模社会网络中的社区结构。文章提出了一种基于拉普拉斯矩阵的在线社会网络社区发现算法,该算法将在线社会网络转换成以拉普拉斯矩阵形式表现,通过计算该矩阵的谱并利用其性质发现社会网络上的社区结构。文章同时针对人造数据集与真实数据集进行了实验,实验结果表明本算法能够有效的发现社会网络中的社区结构。 Web media is generally acknowledged as "the fourth media" after the newspaper,broadcast and TV.And as Web 2.0 prevails over the internet,the web media has a form called "self-media",which means that every individual is a receiver,also it is a publisher and a forwarder at the same time.Therefore,online social networks have been formed.It has been shown that most of these networks exhibit strong modular nature(or community structure).In this paper,a community discovery algorithm is proposed based on Laplacian matrix,this algorithm convert a social network structure into Laplacian matrix,calculate its spectral and using the properties to discover the community structure from the social network.A lot of experiments have been done on real word dataset,and the experimental results show that the algorithm can discover the community structure effectively.
出处 《计算机与数字工程》 2012年第11期60-62,共3页 Computer & Digital Engineering
基金 辽宁省自然科学基金(编号:20102060) 沈阳市科学技术计划项目(编号:F11-264-1-33)资助
关键词 在线社会网络 社区发现 拉普拉斯矩阵 矩阵谱 online social networks community discovery Laplacian matrix spectral of matrix
  • 相关文献

参考文献11

  • 1C. C. Aggarwal. Social Network Data Analytics[M]. Springer Scienceq-Business Media,LLC 2011 ,DOI 10. 1007/978-1-4419- 8462-3_4. 被引量:1
  • 2程学旗,沈华伟.社会信息网络中的社区分析[J].中国计算机学会通讯,2011,12(7). 被引量:5
  • 3M. E. J. Newman and M. Girvan. Finding and evaluating com- munity structure in networks. Phys. Rev. E, 2004, 69 (2): 026113. 被引量:1
  • 4M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proc. Natl. Aead. Sci. , 2002,99 (12) : 7821-7826. 被引量:1
  • 5Jiawei Han, Micheline K. Datamining: Concepts and techniques [M]. 2nd Ed,Morgan Kaufmann, 2006. 被引量:1
  • 6R. Guimera, M. Sales-Pardo, and L. A. N. Amaral. Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E,2004,70:025101(R). 被引量:1
  • 7R. B. Bapat. Graphs and Matrices. Springer, Germany, 2011. 被引量:1
  • 8L. Hagen, A. B. Kahng. New Spectral Methods for Ratio Cut Partitioning and clustering, on IEEE Transactions On Comput- er-Aided Design, 11 (9), September 1992. 被引量:1
  • 9Jianbo Shi, Jitendra Malik. Normalized Cuts and Image Seg- mentation, on IEEE Transactions on Pattern Analysis and Ma- chine Intelligence. 22 (8),August 2000. 被引量:1
  • 10M. Fielder. A property of enginvectors of nonnegative sym- metric matrices and its application to graph theory. Czech. Math. J. ,1975,25(100) :619-633. 被引量:1

共引文献4

同被引文献95

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部