摘要
证明了当生成元g关于(y,z)满足连续、线性增长条件时,一维反射倒向随机微分方程的极大和极小Lp-解(1<p<2)存在;进一步,如果g关于y满足Osgood条件,关于z满足一致连续条件,则其Lp-解存在且惟一。
The result of existence of minimum and maximum Lp ( 1 〈 p 〈 2 ) solutions for the reflected backward sto- chastic differential equations (RBSDEs) was obtained, whose generators are continuous and of linear-growth in (y, z). Furthermore, if g satisfies the Osgood condition in y, and has the property of uniformly continuity in z, both the exist- ence and uniqueness theorems about the Lp (1 〈 p 〈 2) solutions to the RBSDEs were proved.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2012年第11期119-126,共8页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(10971220)
全国优秀博士学位论文作者专项基金资助项目(200919)
中央高校基本科研业务费专项基金资助项目(2010LKSX04)
关键词
反射倒向随机微分方程
极大和极小解
Osgood条件
一致连续条件
存在惟一性
reflected backward stochastic differential equation
maximum and minimum solutions
osgood condition
uniformly continuous
existence and uniqueness