期刊文献+

有效的混合圆弧扫描转换算法 被引量:1

Efficient hybrid scan-conversion algorithm for circles drawing
下载PDF
导出
摘要 为了提高直线和曲线的光栅转换速度而产生了多步算法和行程算法。论文分析了光栅圆弧的特性,利用对中点法的结构和决策参数的重新构造,提出了一种简单、快速的行程计算方法。该方法以2点步进为主进行行程计算,并可以容易地结合局部模式分析以处理复杂的光栅模式。实验和分析表明,所形成的新算法综合利用了2点步进和行程方法的优势,有效地减少了计算量和I/O次数,其圆弧绘制速度明显优于现有其它算法,且理论推导简单,不含乘法、开方等复杂运算,硬件实现容易,并可以推广到其他圆锥曲线的绘制。 In order to improve speed of circles drawing,some multi-step or run-length slice algorithms are proposed.Based on careful analysis of the characteristics of raster-scan circles,a simple and fast method to calculate lengths of slices is presented in this paper.In the new algorithm,double-step control is mainly used for larger horizontal run-slices,and mixed single-step and double-step control is adopted for complicated pattern and run-slices with 45? angle,furthermore,each horizontal run-slice is output at once,only about 2.9 times basic operations are needed for once stepping on average.Experiments and analysis shows that the new algorithm is significantly faster than previously published ones,and its' derivation can be gained in a simple manner.Furthermore,it can be implemented with hardware since no complex operations are involved,and can be developed to draw other conic curves.
出处 《图学学报》 CSCD 北大核心 2012年第6期50-58,共9页 Journal of Graphics
基金 辽宁省科学技术计划资助项目(2007410003) 沈阳市科学计划资助项目(1D91226-5-DD)
关键词 圆弧绘制 整数运算 行程算法 多步算法 扫描转换 circle drawing integer operation run-length algorithm multi-point drawing scan-conversion
  • 相关文献

参考文献17

  • 1Bresenham J E. Algorithm for computer control of a digital Plotter [J]. IBM System Journal, 1965, 4(1): 25-30. 被引量:1
  • 2Boyer V, Bourdin J J. Auto-adaptive step straight-line algorithm [J]. IEEE Computer Graphics and Applications, 2000, 20(5): 67-69. 被引量:1
  • 3程锦,陆国栋,谭建荣.一种快速圆弧绘制算法[J].软件学报,2002,13(12):2275-2280. 被引量:8
  • 4刘勇奎,石教英.圆的像素级生成及反走样算法[J].计算机辅助设计与图形学学报,2005,17(1):34-41. 被引量:14
  • 5Gill G W. N-step incremental straight line algorithms [J]. IEEE Computer Graphics and Applications, 1994, 14 (3): 66-72. 被引量:1
  • 6Fung K Y, Nicholl T M, Dewdney A K. A run-length slice line drawing algorithm without division operations [J]. EUROGRAPHICS '92, 1992, 11(3): 267-277. 被引量:1
  • 7Boyer V, Bourdin J J. Fast lines: a span by span method [J]. Computer Graphics Forum, 1999, 18(3): 377-384. 被引量:1
  • 8Bresenham J E. A linear algorithm for incremental digital display of circular arcs [J]. Communications of the Association for Computing Machinery [J]. 1977, 20(2): 100-106. 被引量:1
  • 9Foley J D, Dam A V, Feiner S K, et al. Computer graphics: principles and practice [M]. Addison-Wesley Publishing Company, Reading Massachusetts, 1990: 89-172. 被引量:1
  • 10Kuzmin Y P. An efficient circle-drawing algorithm [J]. Computer Graphics Forum, 1990, 9(4): 333 336. 被引量:1

二级参考文献45

  • 1刘勇奎,石教英.圆的像素级生成及反走样算法[J].计算机辅助设计与图形学学报,2005,17(1):34-41. 被引量:14
  • 2唐荣锡 汪嘉业.计算机图形学教程[M].北京:北京科学出版社,1996.. 被引量:3
  • 3Hearn,D等 孙正兴等(译).计算机图形学[M].北京:电子工业出版社,1998.. 被引量:1
  • 4Bresenham J E. A linear algorithm for incremental digital display of circular arcs [ J ]. Communications of the Association for Computing Machinery, 1977,20 (2) :100 - 106. 被引量:1
  • 5Foley J D, Dam A V, Feiner S K, et al. Computer graphics: principles and practice [ M ]. Boston: Addison-Wesley, 1990. 被引量:1
  • 6Wu X ,Rokne J. Double-step incremental generation of lines and circles [ J ]. Computer Vision, Graphics and Image Processing, 1987,37 ( 3 ) : 331 - 344. 被引量:1
  • 7Hsu S Y,Chow L R, Liu C H. A new approach for the generation of circles [ J ]. Computer Graphics Forum, 1993,12(2) :105 - 109. 被引量:1
  • 8Graham P, Sitharama S I. Double-and triple-step incremental linear interpolation [ J ]. IEEE Computer Graphics and Applications, 1994,14 ( 3 ) :49 - 53. 被引量:1
  • 9Yao C, Rokne J G. Run-length slice algorithms for the scan-conversion of ellipses [J]. Computers & Graphics, 1998,22 (4) :463 - 477. 被引量:1
  • 10Gill G W. N-step incremental straight-line algorithms [ J ]. IEEE Computer Graphics and Applications, 1994,14 (3) :66 -72. 被引量:1

共引文献20

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部