期刊文献+

非负矩阵分解的分层最小二乘快速算法研究 被引量:3

Fast Hierarchical Alternating Nonnegative Least Squares Algorithmfor Nonnegative Matrix Factorization
下载PDF
导出
摘要 非负矩阵分解是对于代价函数近似非线性优化问题,考虑均方误差值作为代价函数,通过对分层交替非负最小二乘算法的迭代运算量进行分析,对运算耗费大的矩阵运算提出利用限制更新的方法对分层交替非负最小二乘算法进行修改,达到加速收敛的目的。通过仿真,与原倍乘更新算法、投射梯度算法比较,验证算法的有效性和稳定性和高效性。 Nonnegative matrix factorization(NMF) is typically formulated as a nonlinear optimization problem with a cost function measuring the quality of the low-rank approximation. In this paper, we considered the sum of squared errors as a cost function. We proposed a simple modifcation of Hierarchical alternating leasts quares (HALS) to speed up their convergence signifeanfly based on the analysis of matrix computational cost. The proposed organization of the different matrix computations ( in particular the ordering of the matrix products) minimizes the total computa- tional cost. The experimental results confirm the validity and high performance of the developed algorithms by compa- ration with the original HALS and the projected gradient method of Lin(PG).
出处 《计算机仿真》 CSCD 北大核心 2012年第11期174-179,238,共7页 Computer Simulation
基金 国家自然科学基金(51009042)
关键词 非负矩阵分解 梯度投射 分层交替最小二乘算法 倍乘更新 Nonnegative matrix factorization Projected gradient method Hierarchical alternating nonnegative leastsquares Multiplieative update.
  • 相关文献

参考文献16

  • 1P Paatero and U Tapper. Positive matrix faetorization: a nonnegatire factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994,5( 1 ) :111-126. 被引量:1
  • 2D D Lee and H S Seung. Learning the Parts of objects by Nonnegative Matrix Factorization [J]. Nature, 1999,401:788-791. 被引量:1
  • 3D D Lee and H S Seung. Algorithms for Non-negative Matrix Factorization [ J ]. In Advances in Neural Information Processing, 2001,13. 被引量:1
  • 4S Wild, J Curry and A Dougherty. Improving non-negative matrix factorizations through structured initialization[ J]. Pattern Recogn. 2004,37( 11 ) :2217-2232. 被引量:1
  • 5W Liu, N Zheng and X Li. Relative gradient speeding up additive updates for nonnegative matrix factorization [ J ]. Neurocomputing, 2004,57:493-499. 被引量:1
  • 6M Heiler and C Schnorr. Learning sparse representations by non-negative Matrix factori -zation and sequential cone programm- ing [J]. Mach. Learn. Res. 2005, 7(7):1385-1407. 被引量:1
  • 7V Franc, V Hlavae and M Navara. Sequential coordinate-wise algorithm for the non-negative least squares problem [ J ]. In CAIP 2005 : Computer Analysis of Images and Patterns, 2005,3 : 691 - 701. 被引量:1
  • 8C J Lin. Projected Gradient Methods for Nonnegative Matrix Factorization [ J ]. Neural Computation, 2007,19:2756-2779. 被引量:1
  • 9A Cichocki, R Zdunek and S Amari. Nonnegative Matrix Factorization with Quasi-Newton Optimization[ J ]. In Lecture Notes in Artificial Intelligence, Springer volume 4029, 2006:870-879. 被引量:1
  • 10A Cichocki and A H Phan. Fast local algorithms for large scale Nonnegative Matrix and Tensor Factoriza- tions [ J ]. IEICE Trans. on Fundamentals of Electronics, 2009, E92-A (3) :708- 721. 被引量:1

同被引文献39

  • 1苗启广,王宝树.图像融合的非负矩阵分解算法[J].计算机辅助设计与图形学学报,2005,17(9):2029-2032. 被引量:22
  • 2Junibakti Sanubari,Keiichi Tokuda.RLS-type two-dimensional adaptive filter with a t-distribution assumption[J].Signal Processing.2000(12) 被引量:1
  • 3Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis:a tutorial [J]. Limnol. Oceanogr.: Meth- ods, 2008, 6: 572-579. 被引量:1
  • 4Wang H B, Zhang Y J, Xiao X. Quantification of polycyclic aromatic hydrocarbons in water: a comparative study based on three-dimensional excitation-emission matrix fluorescence [J]. Anal. Sci., 2010, 26(12): 1271-1276. 被引量:1
  • 5Wu H L, Shibukawa M, Oguma K. An alternat- ing trilinear decomposition algorithm with appli- cation to calibration of HPLC-DAD for simultane- ous determination of overlapped chlorinated aro- matic hydrocarbons [J]. J. Chemometr., 1998, 12: 1-26. 被引量:1
  • 6Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization [J]. Nature, 1999, 401: 788-791. 被引量:1
  • 7Guillamet D, Vitria J. Introducing a weighted non-negative matrix factorization for image clas- sification [J]. Part. Recog. Lett., 2003, 24(14): 2447-2454. 被引量:1
  • 8Wild S, Curry J, Dougherty A. Improving non- negative matrix factorizations through structured initialization [J]. Part. Recog., 2004, 37(11): 2217-2232. 被引量:1
  • 9Lin C J. Projected gradient methods for non- negative matrix factorization [J]. Neural Comput., 2007, 19(10): 2756-2799. 被引量:1
  • 10Paatero P. A weighted non-negative least squares algorithm for three-way 'PARAFAC' factor anal- ysis [J]. Chemometr. Intell. Lab. Syst., 1997, 38(2): 223-242. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部