期刊文献+

基于话题的Web社会网络关系可视化研究与实现 被引量:3

Research and Implement of Web Social Network Relation Visualization Based on Topic
下载PDF
导出
摘要 针对Web社会网络数据的特点,将话题追踪技术应用到社会网络关系分析当中,能够快速、有效地发现和拓展社会网络关系。介绍了系统采用的话题追踪的方法,以及如何对话题进行跟踪并自动采集话题信息,然后介绍了抽取网络实体及实体间关系的方法。描述了基于话题的社会网络关系分析系统的框架、主要功能和关键技术,并用可视化工具NetDraw给出了网络关系可视化图形,最后还对应用的结果进行了分析。 Based on the characteristics of web network data in the analysis of social network, the paper aimed to apply the technology of topic tracking to find and extend social networks fast and efficiently. It introduced the method of the topic tracking, and introduced how to track and collect the information of the topic automatically and then intro- duced the method of extracting network entities and the relation of entities. This paper described the architecture of the system and specified its major functions and the key technologies. It gave the graphs of the social network with the tool named NetDraw, and also it gave the analysis of application results.
作者 莫倩 张传想
机构地区 北京工商大学
出处 《计算机仿真》 CSCD 北大核心 2012年第11期51-54,169,共5页 Computer Simulation
基金 国家自然科学基金资助项目(61170112) 北京市教委科技创新平台专项(2011101)
关键词 社会网络 关系抽取 话题追踪 信息可视化 Social network Relation extraction Topic tracking Information visualization
  • 相关文献

参考文献5

二级参考文献52

  • 1钟义信.自然语言理解的全信息方法论[J].北京邮电大学学报,2004,27(4):1-12. 被引量:42
  • 2李凯,曹学会.专题追踪技术在新华社多媒体数据库的应用[J].中国传媒科技,2004(9):56-58. 被引量:3
  • 3车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:117
  • 4In: Proceedings of the 6th Message Understanding Conference (MUC - 7) [ C ]. National Institute of Standars and Technology, 1998. 被引量:1
  • 5C. Aone and M. Ramos-Santacruz. Rees: A large-scale relation and event extraction system[A]. In: Proceedings of the 6th Applied Natural Language Processing Conference[C] ,pages 76- 83, 2000. 被引量:1
  • 6S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, R. Weischedel, and the Annotation Group.Algorithms that learn to extract information-BBN: Description of the SIFT system as used for MUC[ A]. In: Proceedings of the Seventh Message Understanding Conference (MUC-7)[C], 1998. 被引量:1
  • 7S. Soderland. Learning information extraction rules for semi-structured and free text[J]. Machine Learning, 1999. 34(1 - 3) :233 - 272. 被引量:1
  • 8N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines[ M]. Cambridge University Press,Cambirdge University, 2000. 被引量:1
  • 9T. Zhang. Regularized winnow methods[A]. In: Advances in Neural Information Processing Systems 13[C], pages703 - 709, 2001. 被引量:1
  • 10D. Haussler. Convolution kernels on discrete structures[R]. Technical Report UCSC-CRL- 99- 10, 7, 1999. 被引量:1

共引文献171

同被引文献15

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部