摘要
传播算子方法不需要对数据协方差矩阵进行特征值分解或奇异值分解,较之于传统子空间类算法有更低的运算复杂度。由于传播算子方法要求较大的快拍数,该文提出了一种新的改进方法,在快拍数为1的情况下,构建Toeplitz Hermitian数据矩阵,并将传播算子方法与求根MUSIC算法相结合,很好的实现了信号解相干,具有较好的实时性。仿真结果表明,在一定信噪比下,该算法与前向空间平滑算法相比有略好的性能,能很好的实现信号解相干,同时大大减少运算的复杂度。
Compared to the traditional subspace algorithm,the propagator method does not require the eigenvalue decomposition or singular value decomposition,and therefore it has lower computational complexity.In order to overcome the difficulty that the DOA estimation needs large snapshot number,a new algorithm is proposed in this paper to build a Toeplitz Hermitian data matrix.Based on the propagator method and root-MUSIC algorithm,rapidly estimate the DOAs of incident signals are achieved even in the case of coherent signals and a single snapshot.Simulation results verify that the proposed method has the better performance as spatial smoothing method with less computational complexity.
出处
《杭州电子科技大学学报(自然科学版)》
2012年第5期45-48,共4页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
国家自然科学基金资助项目(6087211
61101231)
关键词
传播算子
波达方向估计
解相干
托普利茨矩阵
正交投影
propagator method
directions of arrival estimation
decoherence
Toeplitz matrix
orthogonal projection