期刊文献+

非线性对流扩散问题的hp-局部间断Galerkin有限元方法 被引量:4

The hp-local Discontinuous Galerkin Finite Element Method for Nonlinear Convection Diffusion Problems
下载PDF
导出
摘要 本文讨论了非线性对流扩散方程的hp-局部间断Galerkin有限元方法,得到了关于网格尺寸h是最优以及关于逼近次数p是次优的hp-误差估计.本文给出了数值算例,数值结果表明,LDG方法比SIPG或NIPG方法更精确且LDG方法对于罚值不敏感,而SIPG及NIPG方法对于罚值敏感. We consider the hp-local discontinuous Galerkin finite element methods for nonlinear con- vection diffusion problems and use the novel method to deal with the nonlinear convection term. We obtain the hp-error estimates that are optimal in the mesh-size h and slightly suboptimal in the approximation degree. A numerical example is presented in the paper. The numerical results demonstrate that the LDG method is more accurate than the SIPG method (or NIPG method) and the LDG method is not sensitive to the penalty value α for large ps, but the SIPG method and the NIPG method are sensitive to the penalty value for large ps.
作者 由同顺
出处 《工程数学学报》 CSCD 北大核心 2012年第6期894-906,共13页 Chinese Journal of Engineering Mathematics
关键词 hp-有限元 局部间断Galerkin方法 非线性对流扩散方程 hp-误差估计 hp-finite element local discontinuous Galerkin finite element method nonlinear convectiondiffusion problem hp-error estimate
  • 相关文献

参考文献22

  • 1Arnold D N. An interior penalty finite element method with discontinuous elements[J]. SIAM Journal on Numerical Analysis, 1982, 19(4): 742-760. 被引量:1
  • 2Arnold D N, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM Journal on Numerical Analysis, 2001, 39(5): 1749-1779. 被引量:1
  • 3Bassi F, Rebay S. A high-order accurate discontinuous finite element methods for the numerical solution of the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1997, 131(2): 267-279. 被引量:1
  • 4Cockburn B, Karniadakis G, Shu C W. Discontinuous Galerkin Methods, Theroy, Computation and Ap- plications[M]. Lecture Notes in Computational Science and Engineering, Vol. 11, Springer Verlag, 2000. 被引量:1
  • 5Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-dominated prob- lems[J]. Journal of Scientific Computing, 2001, 16(3): 173-261. 被引量:1
  • 6Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems[J]. SIAM Journal on Numerical Analysis, 1998, 35(6): 2440-2463. 被引量:1
  • 7Cockburn B, Dawson C. Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions[C]// Proceedings of the Conference on the Mathematics of Finite Elements and Applications: Mafelap X, Elsevier, 2000:225-238. 被引量:1
  • 8Castillo P, et al. Optimal a priori error estimates for the hp-version of convection-diffusion problems[J]. Mathematics of Computation, 2002, 71(238): 455-478. 被引量:1
  • 9Perugia I, Sch6tzau D. The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations[J]. Mathematics of Computation, 2003, 72(243): 1179-1214. 被引量:1
  • 10Perugia I, SchStzau D. An hp-analysis of the local discontinuous Galerkin method for diffusion problems[J]. Journal of Scientific Computing, 2002, 17(1-4): 561-571. 被引量:1

同被引文献22

  • 1杨继明.对流占优对流扩散方程的间断有限元(DG)解法[J].湖南工程学院学报(自然科学版),2006,16(1):67-69. 被引量:5
  • 2Arnold D N, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM J Numer Anal, 2001, 39: 1749-1779. 被引量:1
  • 3Cockburn B, Karniadakis G, Shu C W. Discontinuous Galerkin Methods. Theroy, Computation and Applications[A]. Lecture Notes in Computational Science and Engineering, Vol. 11 [C]. Berlin: Springer Verlag, 2000. 被引量:1
  • 4Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convectiondominated problem[J]. J Sci Comput, 2001, 16: 173-261. 被引量:1
  • 5Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systerms[J]. SIAM J Numer Anal, 1998, 35: 2440-2463. 被引量:1
  • 6Perugia I, Schotzau D. An hp-analysis of the local discontinuous Galerkin method for diffusion problems[J]. J Sci Comput, 2002, 17: 561-571. 被引量:1
  • 7Perugia I, Schotzau D. The hp-Iocal discontinuous Galerkin method for low-frequency timeharmonic Maxwell equations[J]. Math Comp, 2003, 72: 1179-1214. 被引量:1
  • 8Dolejsi V, Feistauer M, Sobotikova V. Analysis of the discontinuous Galerkin methods for nonlinear convection-dominated problems[J]. Comput Methods Appl Mech Eng, 2005, 194: 2709-2733. 被引量:1
  • 9Cockburn B, Shu C W. The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems[J]. J Comput Phys, 1998, 141: 199-224. 被引量:1
  • 10Brezzi F, Manzini G, Marini D, et al. Discontinuous Galerkin approximations for elliptic problems[J]. Numer Methods for Partial Differential Equations, 2000, 16: 365-378. 被引量:1

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部