期刊文献+

反馈日志与混合概率模型相结合的图像标注 被引量:1

Image Annotation Combining Feedback Log and Mixture Probabilistic Model
下载PDF
导出
摘要 为提高图像标注质量,提出一种反馈日志与混合概率模型相结合的图像标注方法。利用本体语义网计算标注词之间的相似性度,将相似度应用于日志分析,得到具体应用中的标注词间关系,结合标注词间的关系和图像底层特征,使用混合概率模型进行自动图像标注。实验结果表明,该方法能获得较好的查全率和查准率。 To improve the quality of automatic image annotation. A image annotation method combined of feedback log and mixture probabilistic model is proposed in this paper. It calculates the similarity of words by using ontology semantic-web, analyzes the feedback logs by using these similarity and gets the correlation of words in this application, combines the correlation and low-level image features to annotation images. Experimental results show that this method can achieve good recall ratio and precision ratio.
出处 《计算机工程》 CAS CSCD 2012年第21期202-205,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61173130) 重庆市自然科学基金资助项目(CSTC2010BB2217) 中央高校基本科研业务费专项基金资助项目(CDJRC10180009 CDJXS10182216)
关键词 图像标注 语义鸿沟 混合概率模型 日志 语义相关度 image annotation semantic gap mixture probabilistic model log semantic similarity
  • 相关文献

参考文献12

  • 1Wang Feichao. A Survey on Automatic Image Annotation and Trends of the New Age[J]. Procedia Engineering, 2011, 23: 434-438. 被引量:1
  • 2Zhang Dengsheng, Islam M M, Lu Guojun. A Review on Automatic Image Annotation Techniques[J]. Pattern Recognition, 2012, 45(1): 346-362. 被引量:1
  • 3Duygulu P, Barnard K. Object Recognition as Machine Translation Learning a Lexicon for a Fixed Image Vocabulary[C]//Proc. of the 7th European Conference on Computer Vision. Berlin, Germany: Springer, 2002. 被引量:1
  • 4Jeon J. Automatic Image Annotation and Retrieval Using Cross- media Relevance Models[C]//Proe. of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval. [S. 1.]: ACM Press, 2003. 被引量:1
  • 5Feng Shaolei, Manmatha R, LaVrenko V. Multiple Bernoulli Relevance Models for Image and Video Annotation[C]//Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S. 1.]: IEEE Press, 2004. 被引量:1
  • 6Carneiro G, Antoni B C, Moreno P J, et al. Supervised Learning of Semantic Classes for Image Annotation and Retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 394-410. 被引量:1
  • 7Zhou Ning, William K. A Hybrid Probabilistic Model for Unified Collaborative and Content-based Image Tagging[J]. IEEE Transactions on Pattern analysis and Machine Intelligence, 2011, 33(7): 1281-1293. 被引量:1
  • 8Herlocker J, Konstan J, Borchers A, et al. An Algorithmic Framework for Performing Collaborative Filtering[C]//Proc. of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 1999. 被引量:1
  • 9Matlab. Code for the Colored Pattern Appearance Model[EB/OL]. (2010-11-21 ). httD://www.viplab.cs.nott.ac.uk/download/CPAM.html. 被引量:1
  • 10冯霞,黄亚楼.基于压缩直方图的图像分类[J].南京航空航天大学学报,2005,37(3):319-324. 被引量:1

二级参考文献18

  • 1Smeulders A W M,Worring S,Santini A,et al.Content-based image retrieval at the end of the early years[J]. IEEE Trans PAMI, 2000,22:1349~1380. 被引量:1
  • 2Chapelle O, Haffner P, Vapnik V. SVMs for histogram-based image classification[J]. IEEE Transaction on Neural Networks, 1999,10(5):1055~1065. 被引量:1
  • 3Tian Q, Hong P, Huang T S. Update relevant image weights for content-based image retrieval using support vector machines[A]. Proc IEEE Int Conf on Multimedia and Expo[C].2000.1199~1202. 被引量:1
  • 4Tieu K, Viola P. Boosting image retrieval[A]. Proc of CVPR[C].2000.228~235. 被引量:1
  • 5Qiu G. Indexing chromatic and achromatic patterns for content-based color image retrieval[J]. Pattern Recognition, 2002,35(8):1675~1686. 被引量:1
  • 6Qiu G, Lam K M. Spectrally layered color indexing, image and video retrieval[A]. CIVR2002, M.S. Lew, N. Sebe, J.P. Eakins (Eds.). Lecture Notes in Computer Science[C].2002,2383:100~107. 被引量:1
  • 7Berens J, Finlayson G D, Qiu G. Image indexing using compressed color histogram[J]. IEE Proceedings, Vision, Image and Signal Processing, 2000,147(4):349~355. 被引量:1
  • 8Huang J, Kumar S R, Mitra M, et al. Image indexing using color correlograms[J]. International Journal of Computer Vision, 1999.245~268. 被引量:1
  • 9Freund Y, Schapire R. A decision-theoretic generalization of online learning and an application to boosting[J]. J Comp & Sys Sci, 1997,55(1):119~139. 被引量:1
  • 10Howe N. Boosted image classification: an empirical study[A]. ICML Workshop on Machine Learning in Computer Vision[C].Sydney, Australia,2002. 被引量:1

同被引文献15

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部