期刊文献+

基于移动率的T-S模糊模型的结构辨识方法

Structure Identification Method of T-S Fuzzy Model Method Based on Moving Rate
下载PDF
导出
摘要 为了提高现行模糊辨识方法的有效性,提出了基于移动率的T-S模糊模型的结构辨识方法。主要工作如下:首先,定义T-S模糊模型的S型、Z型和梯形隶属函数的移动率,将此移动率与现行的隶属度相比较可以看出,提出的方法比较有效;然后,定义基于移动率的T-S模糊推理方法,并且提出基于移动率的前提和结论部分的T-S模型的辨识方法;最后,将提出的识别方法应用于降水量和安全形势的预测模糊建模。测试结果表明,与现行方法和模糊神经网络算法相比,该方法明显提高了模糊辨识的有效性,减少了规则数目,并降低了辨识误差。 To improve the effectiveness of the existing fuzzy identification method,a structure identification method based on moving rating was proposed for T-S fuzzy model.The main work is as below.Firstly,the moving rates for S-type,Z-type and trapezoidal membership functions of T-S fuzzy model were defined,and compared with proposed moving rate and the existing grade of the membership function,the proposed moving rate is more effective.Next,T-S fuzzy reasoning method based on moving rating was proposed,and the identification methods for premise and consequence based on moving rate were proposed for T-S model.Finally,the proposed identification method was applied to the fuzzy modeling for the precipitation forecast and security situation prediction.Test results,compared with existing method and fuzzy neural network algorithm,show that the proposed method significantly improves the effectiveness of fuzzy identification,and reduces the number of rule and identification error.
出处 《计算机科学》 CSCD 北大核心 2012年第11期170-173,182,共5页 Computer Science
基金 国家自然科学基金项目(60970157) 辽宁省博士启动基金项目(2081019)资助
关键词 模糊建模 结构辨识 模糊推理 降水量预测 安全态势 Fuzzy modeling Structure identification Fuzzy reasoning Precipitation forecast Security situation
  • 相关文献

参考文献17

  • 1Zhu Bing, He Chang-zheng, Liatsis P, et al. A GMDH-based fuzzy modeling approach for constructing TS model [J]. Fuzzy Sets and Systems,2012,189(1) : 19-29. 被引量:1
  • 2Du Hai-ping, Zhang Nong. Application of evolving Takagi-Suge- no fuzzy model to nonlinear system identification[J]. Applied Soft Computing, 2008,8 (1) : 676-686. 被引量:1
  • 3Chen J Q, Xi Y G, Zhang Z J. A clustering algorithm for fuzzy model identification [J]. Fuzzy Sets Syst. , 1998(98):319-329. 被引量:1
  • 4Sun C-T. Rule-base structure identifica-tion in an adaptive-net- work-based fuzzy inference system[J]. IEEE Transactions on Fuzzy Systems, 1994,2(1) : 64-73. 被引量:1
  • 5Chiu S L. Fuzzy model identification based on cluster estimation [J]. Journal of Intelligent and Fuzzy Systems, 1994,2 (3) : 267- 278. 被引量:1
  • 6Pouzols F M, Barros A Bo Automatic clustering-based identifica- tion of autoregressive fuzzy inferenee models for time series[J].Neurocomputing, 2010,73(10-12) : 1937-1949. 被引量:1
  • 7Jia Li, Chiu Min-sen, Ge Shu-zhi. A noniterative neuro-fuzzy based identification method for Hammerstein processes [J]. Journal of Process Control, 2005,15 (7) : 749-761. 被引量:1
  • 8Ertugrul S. Predictive modeling of human operators using para metric and neuro-fuzzy models by means of computer-based i dentification experiment[J]. Engineering Applications of Artifi cial Intelligence, 2008,21 (2) : 259-268. 被引量:1
  • 9Li Chao-shun, Zhou Jian-zhong, Xiang Xiu-qiao, et al. T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm[J]. Engineering Applications of Artificial Intelligence, 2009,22 (4/5) : 646-653. 被引量:1
  • 10G6mez-Skarmeta A F, Delgado M, Vila M A. About the use of fuzzy clustering techniques for fuzzy model identification [J]. Fuzzy Sets and Systems, 19 9 9,10 6 (2) : 17 9-18 8. 被引量:1

二级参考文献14

  • 1Buckley J, Hayashi J Y. Fuzzy neural networks: a survey[J]. Fuzzy Sets and Systems, 1994,66(1):1-13. 被引量:1
  • 2Jang J R. Self learning fuzzy logic controllers based on temporal back-propagation [J]. IEEE Trans. Neural Network, 1992, 3 (5) : 714-723. 被引量:1
  • 3Wang Li, Mendel J M. Generating fuzzy rules by learning from example[C]//Intelligent Control, Proceedings of the 1991 IEEE International Symposium on. 1991 : 263-268. 被引量:1
  • 4Lee K C,Cho H R,Kim J S. A self-organizing feature map-driven approach to fuzzy approximate reasoning[J]. Expert Systems with Applications, 2007,33 (2) : 509-521. 被引量:1
  • 5Fukuda S, Hiramhtsu K. Prediction ability and sensitivity of artificial intelligence-based habitat preference models for predicting spatial distribution of Japanese medaka(Oryzias latipes)[J]. logical Modelling, 2008,215 (4):301-313. 被引量:1
  • 6Lin Da, Wang Xing-yuan, Nian neural networks modeling and Fu-zhong, et al. Dynamic fuzzy adaptive baekstepping tracking control of uncertain chaotic systems[J]. Neurocomputing, 2010, 73(16-18) : 2873-2881. 被引量:1
  • 7Yu Xia,Wang Shuo-yu, Zhao Xian-chao. A health-check system for health-care robot Robotics and Biomimetics(ROBIO)[C]//2005 IEEE International Conference on. 2005 : 709-712. 被引量:1
  • 8Jiang Yin-lai, Wang Shuo-ytu Adapting directional intention identification in running control of a walker to individual difference with fuzzy leaming[C]//Mechatronics and Automation (ICMA). 2010 International Conference on. 2010:693-698. 被引量:1
  • 9Ho C, Li Jing-jiao, Gwak S. Research of a New Fuzzy Reasoning Method By Moving of Fuzzy Membership Functions [C]// IPTC. IEEE computer society, 2010 : 297-300. 被引量:1
  • 10Lohani A K, Goel N K, Bhatia K K S. Takagi-Sugeno fuzzy inference system for modeling stage-discharge relationship[J]. Journal of Hydrology, 2006,331(1/2) : 146-160. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部