期刊文献+

船舶汽轮机优化设计 被引量:3

Optimal Design of Marine Steam Turbine
下载PDF
导出
摘要 船舶汽轮机是船舶动力装置中关键设备之一,且随着汽轮机大功率的发展趋势,其重量体积进一步增加,这给设备的设计安装带来困难,并严重影响船舶的机动性。因此,有必要在汽轮机设计中,应用优化技术寻找设计参数的最优组合,以减小汽轮机的重量或体积。建立船舶汽轮机设计计算数学模型,对其重量受冷凝器压力、高低压缸功率比和低压缸末级径高比影响的敏感性进行分析。以船舶汽轮机重量最小为目标函数,在满足一定的结构及性能约束条件下,利用混合粒子群算法对其进行优化设计。研究结果显示,采用优化方案后,汽轮机重量减小了3.13%。最后对优化结果进行了分析,指明了汽轮机优化设计的方向。 The marine steam turbine is one of the key equipments in marine power plant,and it tends to using high power steam turbine,which makes the steam turbine to be heavier and larger,it causes difficulties to the design and arrangement of the steam turbine,and the marine maneuverability is seriously influenced.Therefore,it is necessary to apply optimization techniques to the design of the steam turbine in order to achieve the minimum weight or volume by means of finding the optimum combination of design parameters.The math model of the marine steam turbine design calculation was established.The sensitivities of condenser pressure,power ratio of HP turbine with LP turbine,and the ratio of diameter with height at the end stage of LP turbine,which influence the weight of the marine steam turbine,were analyzed.The optimal design of the marine steam turbine,aiming at the weight minimization while satisfying the structure and performance constraints,was carried out with the hybrid particle swarm optimization algorithm.The results show that,steam turbine weight is reduced by 3.13% with the optimization scheme.Finally,the optimization results were analyzed,and the steam turbine optimization design direction was indicated.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2012年第B09期421-425,共5页 Atomic Energy Science and Technology
关键词 船舶汽轮机 混合粒子群算法 重量 优化设计 marine steam turbine hybrid particle swarm optimization algorithm weight optimal design
  • 相关文献

参考文献7

  • 1张俊迈,胡德明编著..舰船汽轮机[M].北京:国防工业出版社,1992:354.
  • 2李雅杰.船用核动力装置热工参数最优化设计[D].哈尔滨:哈尔滨工程大学,1985. 被引量:3
  • 3KENNEDY J, EBERHART R C. Particle swarm optimization [ C] // IEEE International Conference on Neural Networks. USA: IEEE, 1995: 1 942-1 948. 被引量:1
  • 4HOLLAND J H. Adaptation in natural and arti- ficial systems [M]. Ann Arbor: University of Michigan Press, 1975. 被引量:1
  • 5SU Hongsheng, ZHANG Youpeng. An integrat- ed neural classifier for stream turbine damage identification based on PSO[J]. Key Engineering Materials, 2007, 353(4): 2 716-2 719. 被引量:1
  • 6QIN Xiaoyong, CHEN Lingen, SUN Fengrui,' et al. Optimization for a steam turbine stage effi- ciency using a genetic algorithm [J]. Applied Thermal Engineering, 2003(23): 2 307-2 316. 被引量:1
  • 7TRIGG M A, TUBBY G R, SHEARD A G. Automatic genetic optimization approach to two- dimensional blade profile design for steam tur- bines[J]. Journal of Turbomachinery, 1999, 121 (1) : 11-17. 被引量:1

共引文献2

同被引文献20

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部