期刊文献+

从机器人输出反馈自适应神经控制中学习 被引量:5

Learning from output feedback adaptive neural control of robot
原文传递
导出
摘要 针对系统参数完全未知且仅输出可测的机器人,使用径向基函数(RBF)神经网络和高增益观测器设计了一种自适应神经控制算法.该算法不仅实现了闭环系统所有信号的最终一致有界,而且沿周期跟踪轨迹实现了对未知闭环系统动态的确定学习.学过的知识可用来改进系统的控制性能,也可应用于后续相同或相似的控制任务以节约时间和能量.仿真研究表明了所设计的控制算法的正确性和有效性. An adaptive neural control algorithm is proposed for completely unknown robot with only output measurement using RBF networks and high-gain observer.The designed adaptive neural controller not only guarantees uniformly ultimately bounded of all signals in the closed-loop system,but also achieves the deterministic learning of the unknown closed-loop system dynamics along periodic tracking orbit.The learned knowledge can be used to improve control performance,and can also be recalled and reused in the same or similar control task to save time and energy.Simulation results show the effectiveness of the proposed approach.
出处 《控制与决策》 EI CSCD 北大核心 2012年第11期1740-1744,1750,共6页 Control and Decision
基金 国家自然科学基金项目(60743011 61075082)
关键词 确定学习 RBF神经网络 自适应神经控制 高增益观测器 机器人 deterministic learning RBF networks adaptive neural control high-gain observer robot
  • 相关文献

参考文献20

  • 1Miyamoto H, Kawato M, Setoyama T, et al. Feedback error learning neural networks for trajectory control of a robotic manipulator[J]. Neural Network, 1988, 1(3): 251-265. 被引量:1
  • 2Frank L Lewis, Kai Liu, Aydin Yesildirek. Neural net robot controller with guaranteed tracking performance[J]. IEEE Trans on Neural Network, 1995, 6(3): 703-715. 被引量:1
  • 3Tsuji T, Tanaka Y. On-line learning of robot arm impedance using neural networks[J]. Robotics and Autonomous Systems, 2005, 52(4): 257-271. 被引量:1
  • 4Xu Dong, Zhao Dongbin, Yi Jianqiang, et al. Trajectory tracking control of omnidirectional wheeled mobile manipulators: Robust neural network-based sliding mode approach[J]. IEEE Trans on Systems, Man, and Cybernetics: B, 2009, 39(3): 788-799. 被引量:1
  • 5牛玉刚,杨成梧,陈雪如.基于神经网络的不确定机器人自适应滑模控制[J].控制与决策,2001,16(1):79-82. 被引量:28
  • 6俞建成,李强,张艾群,王晓辉.水下机器人的神经网络自适应控制[J].控制理论与应用,2008,25(1):9-13. 被引量:43
  • 7Slotine J J, Li W. Applied nonlinear control[M]. Englewood Cliffs: Prentice Hall, 1991:311-326. 被引量:1
  • 8Nicosia S, Tomei E Robot control by using only joint position measurements[J]. IEEE Trans on Automatic Control, 1990, 35(9): 1058-1061. 被引量:1
  • 9Kim Y H, Lewis F L. Neural network output feedback control of robot manipulators[J]. IEEE Trans on Robotics and Automation, 1999, 15(2): 301-309. 被引量:1
  • 10Sun Fuchun, Sun Zengqi, Woo Pengyung. Neural network-based adaptive controller design of robotic manipulators with an observer[J]. IEEE Trans on Neural Network, 2001, 12(1): 54-67. 被引量:1

二级参考文献14

  • 1董聪,郦正能,夏人伟,何庆芝.多层前向网络研究进展及若干问题[J].力学进展,1995,25(2):186-196. 被引量:47
  • 2Nam B H,Proc Am Contr Conf,1997年,3120页 被引量:1
  • 3Man Z,Proc IEEE Int Conf Neural Networks,1995年,2403页 被引量:1
  • 4Young K K D,IEEE Trans Automat Control,1988年,4卷,5期,556页 被引量:1
  • 5VAN de VEN P, FLANGAN C, TOAL D. Neural network control of underwater vehicles [J]. Engineering Applications of A rtificial Intelligence, 2005, 18(5): 533- 547. 被引量:1
  • 6YUH J. A neural net controller for underwater robotic vehicles[J]. IEEE J of Oceanic Engineering, 1990, 15(3): 161 - 166. 被引量:1
  • 7LORENTZ J, YUH J. A survey and experimental study of neural network AUV control[C]//Proc of the Symposium on Autonomous Underwater Vehicle Technology. Monterey, CA, USA: [s.n.], 1996:109 -116. 被引量:1
  • 8FUJII T, URA T. SONCS: Self-organizing neural-net-controller system for autonomous underwater robots[C]//Proc of IEEE lnt Joint Confon Neural Networks. Singapore: [s.n.], 1991: 1973- 1982. 被引量:1
  • 9ISHII K, FUJII T, URA T. An on-line adaptation method in a neural network based control system for AUV's[J]. IEEE J of Oceanic Engineering, 1995, 20(3): 221 - 228. 被引量:1
  • 10LEWIS F L, LIU K, YESILDIREK A. Neural net robot controller with guaranteed tracking performance[J]. IEEE Trans on Neural Networks, 1995, 6(3): 703 - 715. 被引量:1

共引文献69

同被引文献63

  • 1郑艳,郑秀萍,褚俊霞,井元伟.基于T-S模型的体操机器人系统模糊变结构控制[J].控制与决策,2006,21(1):34-37. 被引量:10
  • 2LEWIS F L,YEGILDIREK A,LIU K.Multilayer neural-net robot controller with guaranteed tracking performance[J].IEEE Transactions on on Neural Networks,1996,1(2):388-389. 被引量:1
  • 3ZUO Y,WANG Y N,ALE.Neural network robust H∞tracking control strategy for robot manipulator[J].Applied Mathematical Modelling,2010,34(7):1823-1838. 被引量:1
  • 4WAI R J,CHEN P C.Robust neural-fuzzy-network control for robot manipulator including actuator dynamics[J].IEEE Transactions on Industrial Electronics,2006,53(4):1328-1349. 被引量:1
  • 5CHANG Y C,YEN H M.Robust tracking control for a class of uncertain electrically driven robots[J].IET Control Theory & Applications,2009,3(5):519-532. 被引量:1
  • 6WANG C,HILL D J.Learning form neural control[J].IEEE Transactions on Neural Networks,2006,17(1):130-146. 被引量:1
  • 7WANG C,HILL D J.Deterministic Learning Theory for Identification,Recognition and Control[M].Boca Raton:CRC Press,2009. 被引量:1
  • 8WANG C,CHEN T R.Rapid detection of small oscillation faults via deterministic learning[J].IEEE Transactions on Neural Networks,2011,22(8):1284-1296. 被引量:1
  • 9WANG C,WANG M,LIU T F,et al.Learning from ISS-Modular adaptive NN control of nonlinear strict-feedback systems[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(10):1539-1550. 被引量:1
  • 10DAIS L,WANG C,LUO F.Identification and learning control of ocean surface ship using neural networks[J].IEEE Transations Industria Informatics,2012,8(4),801-810. 被引量:1

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部