摘要
The Brownian coagulation of nanoparticles with initial bimodal size distribution, i.e., mode i and j, is numerically studied using the moment method. Evolutions of particle number concentration, geometric average diameter and geometric standard deviation are given in the free molecular regime, the continuum regime, the free molecular regime and transition regime, the free molecular regime and continuum regime, respectively. The results show that, both in the free molecular regime and the continuum regime, the num- ber concentration of mode i and j decreases with increasing time. The evolutions of particle geometric average diameter with different initial size distribution are quite different. Both intra-modal and inter-modal coagulation finally make the polydispersed size distribution become monodispersed. As time goes by, the size distribution with initial bimodal turns to be unimoda/and shifts to a larger particle size range. In the free molecular regime and transition regime, the inter- modal coagulation becomes dominant when the number concentrations of mode i and j are of the same order. The effects of the number concentration of mode i and mode j on the evolution of geometric average diameter of mode j are negligible, while the effects of the number concentration of mode j on the evolution of geometric average diameter of mode j is distinct. In the free molecular regime and continuum regime, the higher the initial number concentration of mode j, the more obvious the variation of the number concentration of mode i.
The Brownian coagulation of nanoparticles with initial bimodal size distribution, i.e., mode i and j, is numerically studied using the moment method. Evolutions of particle number concentration, geometric average diameter and geometric standard deviation are given in the free molecular regime, the continuum regime, the free molecular regime and transition regime, the free molecular regime and continuum regime, respectively. The results show that, both in the free molecular regime and the continuum regime, the num- ber concentration of mode i and j decreases with increasing time. The evolutions of particle geometric average diameter with different initial size distribution are quite different. Both intra-modal and inter-modal coagulation finally make the polydispersed size distribution become monodispersed. As time goes by, the size distribution with initial bimodal turns to be unimoda/and shifts to a larger particle size range. In the free molecular regime and transition regime, the inter- modal coagulation becomes dominant when the number concentrations of mode i and j are of the same order. The effects of the number concentration of mode i and mode j on the evolution of geometric average diameter of mode j are negligible, while the effects of the number concentration of mode j on the evolution of geometric average diameter of mode j is distinct. In the free molecular regime and continuum regime, the higher the initial number concentration of mode j, the more obvious the variation of the number concentration of mode i.
基金
supported by the Major Program of National Natural Science Foundation of China (11132008)