期刊文献+

原位生成二氧化钛对静电纺聚偏氟乙烯锂离子电池隔膜力学性能及电化学性能的影响 被引量:16

THE EFFECTS OF in situ GENERATED TITANIUM DIOXIDE ON THE MECHANICAL AND ELECTROCHEMICAL PROPERTIES OF ELECTROSPUN POLYVINYLIDENE FLUORIDE SEPERATOR FOR LITHIUM-ION BATTERY
原文传递
导出
摘要 通过钛酸丁酯(TBTi)在聚偏氟乙烯(PVDF)溶液中水解原位生成二氧化钛(TiO2),采用静电纺丝方法制备了PVDF/TiO2复合隔膜,并考察了TiO2含量对隔膜表面形貌、热学性能、力学性能及聚合物电解质电化学性能的影响.结果表明,隔膜的拉伸强度和断裂伸长率由于TiO2的加入得到显著提高,最大增幅分别达到228.6%和244.8%,同时聚合物电解质的电化学性能也得到了增强,室温离子电导率从3.9 mS/cm增加到5.1 mS/cm. Composite nanofiber separators of polyvinylidene fluoride (PVDF) and titanium dioxide (TiO2) were prepared by electrospinning of PVDF solution containing in situ generated TiO2. The effects of TiO2 contents on the seperators' structure and properties were investigated. The morphology of seperators was characterized by scanning electron microscopy (SEM) , and the fiber diameter distribution was also calculated using scnimage software. Differential scanning calorimetry (DSC) measurements were carried out to investigate seperator' s thermal properties such as melting point, melting enthalpy and crystallinity. The mechanical strength was determined by tensile tests. The ionic conductivity was determined by AC impedence method,and the decomposition potential was determined by linear sweeping voltammetry (LSV). TI~ results indicate that the seperator' s tensile strength and elongation at break were improved remarkably after the addition of TiO2 , with the maximum increase rate of 228.6% and 244. 8% , respectively. The presence of TiO2 reduced the crystallinity of the seperators, which is benificial to the transfer of lithium ions. The polymer electrolytes' electrochemical performance was also enhanced, and the ionic conductivity at room temperature increased from 3.9 mS/cm to 5.1 mS/cm.
出处 《高分子学报》 SCIE CAS CSCD 北大核心 2012年第11期1319-1325,共7页 Acta Polymerica Sinica
基金 辽宁省自然科学基金(基金号20091060) 航空基金(基金号2010ZC54006)资助项目
关键词 静电纺丝 PVDF 隔膜 锂离子电池 原位二氧化钛 Electrospinning, PVDF, Seperator, Lithium ion battery, in situ TiO2
  • 相关文献

参考文献20

二级参考文献25

  • 1[1]Gozdz A S,Schmutz C N,Tarascon J M,Warren P C.US patent,H01M,5418091. 1995-05-23 被引量:1
  • 2[2]Gozdz A S, Schmutz C N,Tarascon J M, Warren P C. US patent, H01M,5540741. 1996-07-30 被引量:1
  • 3[3]Boudin F.J Power Sources, 1999,81 ~ 82:804 ~ 807 被引量:1
  • 4[4]Pasquier A D, Warren P C, Culver D, Gozdz A S, Amatucci G G, Tarscon J M. Solid State Ionics, 2000,135: 249 ~ 257 被引量:1
  • 5[5]Michot T,Nishimoto A,Watanabe M.Electrochim Acta,2000,45:1347 ~ 1360 被引量:1
  • 6[6]Shi Q, Yu M X, Zhou X, Yan Y S, Wan C R. J Power Sources,2002,103:286 ~ 292 被引量:1
  • 7[7]Slane S, Salomon M. J Power Sources, 1995,55:7 ~ 10 被引量:1
  • 8[8]Lee K H, Lee Y G, Park J K, Seung D Y. Solid State Ionics, 2000,133:257 ~ 263 被引量:1
  • 9Appetecchi G B,Croce F,Scrosati B.J Power Sources, 1997,66:77~82 被引量:1
  • 10Watanabe M,Kanba M,Nagaoka K,Shinohara I.J Appl Electrochem, 1982,27:4191 ~4193 被引量:1

共引文献14

同被引文献206

引证文献16

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部