期刊文献+

基于行车时间的道路网络时空自相关模型研究 被引量:8

Spatial-temporal autocorrelation model of road network based on travelling time
下载PDF
导出
摘要 以城市道路网络为研究对象,提出一种适用于道路网络的邻接矩阵建立方法,并建立一种基于邻接关系的局部时空自相关指数LSTACFA。在此基础上,采用伦敦LCAP项目中所采集的行车时间数据,用ST-ACF和LSTACFA从全局和局部角度分析伦敦市路网的时空相关性。研究结果表明:伦敦市路网存在着显著的时空正相关,并且这种时空相关性具有时间动态、空间异质等特点,同时揭示了伦敦市时空自相关分布状态以及其变化趋势。通过与CCF指数的对比验证了LSTACFA的合理性和准确性。 A method of building adjacency matrix of road network was put forward. A new local spatial-temporal autocorrelation coefficient based on adjacency, LSTACFA was proposed. Based on this, exploratory spatial-temporal autocorrelation analysis was fitrther carried out by using journey time data collected on London's road network. The results show that through the use of both global and local autocorrelation measures, the autocorrelation structure of London's road network is found to be dynamic and heterogeneous in both time and space. The distribution of spatial-temporal autocorrelation and its trend are discovered. LSTACFA is accurate by checking with CCF coefficient.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第10期4114-4122,共9页 Journal of Central South University:Science and Technology
基金 教育部新世纪优秀人才支持计划项目(NECT-10-0831) 中南大学前沿科学研究计划项目(2010QYZD002) 中国博士后科学基金资助项目(20090461019)
关键词 道路网络 交通流 行车时间 时空自相关分析 邻接矩阵 road network traffic flow joumey time spatial-temporal autocorrelation analysis adjacency matrix
  • 相关文献

参考文献20

二级参考文献41

共引文献46

同被引文献75

引证文献8

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部