期刊文献+

数字信息资源生产质量监测与控制的粗糙集模型 被引量:2

Rough Set Model for Digital Information Resources Production Quality Monitoring and Control
下载PDF
导出
摘要 数字信息资源已经成为当今信息化社会重要的战略资源。考虑到数字信息资源生产的复杂性和不确定性,引入可以较好处理这类不完备和不精确数据的粗糙集理论,在分析数字信息资源生产质量影响因素的基础上,构建数字信息资源生产质量监测与控制的粗糙集模型,从复杂的生产质量相关数据中挖掘出有效的生产质量影响因素的相关规则,这些规则可用于数字信息资源生产质量的监测与控制。通过对数字历史纪录片生产的应用实例的分析,验证该模型的有效性。 Digital information resources have become the most important strategic resources in todays information society. Considering the complexity and uncertainty of the digital information resources production, it introduces rough sets theory, which can better handle this kind of incomplete and inaccurate data. The rough set model for digital information resources production quality monitoring and control is constructed on the basis of the analysis of its production quality factors, and the effective production quality related rules have been mined from complex production-quality-related data. These rules can be used for the production quality monitoring and control of digital information resources. Finally, it uses an application example of digital history documentary production to verify the validity of the model.
出处 《图书情报知识》 CSSCI 北大核心 2012年第6期81-86,共6页 Documentation,Information & Knowledge
关键词 数字信息资源 生产质量 监测 控制 粗糙集理论 Digital information resources Production quality Monitoring Control Rough set theory
  • 相关文献

参考文献8

二级参考文献43

共引文献111

同被引文献47

  • 1欧阳丽红.远程网络课程质量保证之个案研究[J].开放教育研究,2005,11(1):74-80. 被引量:4
  • 2丁兴富,王龙,冯立国,沈孝苹,田洪滨,金红莲.北京市精品课程网上资源运行情况专题调研及主要结论[J].中国大学教学,2006(5):22-25. 被引量:52
  • 3刘武,杨雪.中国高等教育顾客满意度指数模型的构建[J].公共管理学报,2007,4(1):84-88. 被引量:80
  • 4百度百科[EB/OL].http://baike.baidu.com/view/132013.htm,2009-08-24. 被引量:132
  • 5维基百科[EB/OL].<http://en.wikipedia.org/wiki/Course_management_sy stem, 2008-05.> 被引量:45
  • 6Toon De Pessemier, Tom Deryckere, Luc Martens. Context aware recommendations for user-generated content on a social network site [C].Proceedings of the seventh european conference on European in- teractive television conference,2009:113-136. 被引量:1
  • 7Simon Overell,Borkur Sigurbjornsson and Roelof van Zwol.Classifying Tags using Open Content Resources [C].2009 2nd ACM International Conference on Web Seareh and Data Mining. 被引量:1
  • 8Eugene Agiehtein, Carlos Castillo, Debora Donato. Finding High- Quality eontent in Social Media [C]. 2008 ACM International Confer- enee on Web Seareh and Data Mining,2008: 67-73. 被引量:1
  • 9Alberto Cusinato,Vincenzo Della Mea,Francesco Di Salvatore and Stefano Mizzaro [C].QuWi: Quality Control in Wikipedia.2009 3rd Workshop on Information. 被引量:1
  • 10Besiki Stvilia,Michael B. Twidale, Linda C. Smith, and Les Gasser.Information Quality Work Organization in Wikipedia[J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY,2008,(6):983-1001. 被引量:1

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部