期刊文献+

具有Ivlev型功能反应的捕食系统的正解存在性 被引量:1

Existence of positive solutions for the predator-prey system with Ivlev's type functional response
下载PDF
导出
摘要 研究了捕食者与食饵均具有线性密度制约的Ivlev型捕食模型的平衡态问题,寻找两种群能够共存的条件.利用线性算子的特征值理论、扰动理论和分歧理论,以扩散系数为分歧参数,证明了在一定条件下系统在正常数平衡态附近存在分歧现象,且局部分支可以延拓成整体分支,同时还给出了分歧点附近解的结构.结果显示,捕食者(天敌)的扩散系数选取适当时两种群可以并存. The steady-state problem of the Ivlev's type predator-prey systems with prey and predator both having linear density restricts is studied.The conditions for the two populations' coexistence are looked for.Using eigenvalue theory,perturbation theory and bifurcation theory of linear operator,the bifurcation from constant steady-state solution in a certain condition is obtained,when diffusion coefficient as bifurcation parameter is used.Moreover,the local branch could extend to global branch and the structure near bifurcation point is given.Two populations can coexist with appropriate diffusion coefficient of predator(natural enemy).
作者 查淑玲
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2012年第6期5-8,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10571115) 陕西省教育厅基金资助项目(2010YKF537) 渭南师范学院基金资助项目(12YKS017)
关键词 捕食系统 Ivlev型功能反应 特征值 分歧 不动点指标 predator-prey system IvIev's type functional response eigenvalue bifurcation fixed point index
  • 相关文献

参考文献4

二级参考文献21

  • 1Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol., 1975, 44(1): 331-340 被引量:1
  • 2DeAngelis D L, Goldstein 1% A, O'neill 1% V. A model for trophic interaction. Ecology, 1975, 56(2): 881-892 被引量:1
  • 3Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J. Math. Anal., 1986, 17(6): 1339-1353 被引量:1
  • 4Du Y H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model. Trans. Araer. Math. Soc., 1997, 349(6): 2443-2475 被引量:1
  • 5Du Y H, Lou Y. Qualitative behavior of positive solutions of a predator-prey model: effects of saturation. Proc. R. Soc. Edinburgh Sect. A, 2001, 131(2): 321-349 被引量:1
  • 6Ye Q X, Li Z Y. Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 1990 被引量:1
  • 7Smoller J. Shock Waves and Reaction-Diffusion Equations. New York: Spring-Verlag, 1983 被引量:1
  • 8Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues.J. Functional Analysis, 1971, 8(2): 321-340 被引量:1
  • 9Wu J H. Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Analysis, 2000, 39(7): 817-835 被引量:1
  • 10Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Rational Mech. Anal., 1973, 52(2): 161-180 被引量:1

共引文献32

同被引文献7

  • 1Kousuke Kuto,Yoshio Yamada. Coexistence Problem for a Prey Predator Model with Density Dependent Diffusion [ J ]. Nonlinear Analy- sis,2009,71 : 2223 - 2232. 被引量:1
  • 2Tian Can-rong, LIN Zhui-gui. Instability Induced by Cross-dif- fusion in Reaction Diffusion Systems [ J 1. Nonlinear Analysis, 2010,11 : 1036 - 1045. 被引量:1
  • 3Lou Yuan,Ni Wen-ming. Diffusion Self-diffusion and Cross Dif- fusion[J]. J D Differential Equations,1996,131:79 -131. 被引量:1
  • 4Peng Rui, Wang Ming-xin. Uniqueness and Stability of Steady- states for a Predator-prey Model in Heterogeneous Environment [ J]. Pro- ceedings of the American Mathematical Society,2008,136:859 -865. 被引量:1
  • 5Du Yi-hong, Lou Yuan. Some Uniqueness and Exact Multiplici- ty Results for a Predator-prey Model [ J ]. Transaction of the American Mathematical Society, 1997,349 (6) :2443 - 2475. 被引量:1
  • 6Smoller Joel. Shock Wave and Reaction-diffusion Equations [ M ]. NewYork : Springer-Verlag, 1983. 被引量:1
  • 7Wu Jian-hua. Global Bifurcation of Coexistence State for the Competition Model in the Chemostat [ J ]. Nonlinear Analysis 2000,39: 817 -835. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部