摘要
自日本数学家K.Iseki于一九六六年引入BCI-代数(见[1])以来,尤其是K.Iseki在一九八0年对BCI-代数理论做了一系列奠基工作(见[2-8])以来,BCI-代数理论的研究工作有了很大发展,取得了许多成果。在BCI-代数理论中一些类的研究一直是研究的主要方向之一。本文中作者要引入一类新的BCI-代数,使得BCI-代数类[9-10]。
In this paper the author introduced a new class ofBCI-algebras, i.e., the
class of DFO-algebras, and did some discussfor this class of algebras. The main results of
the paper are as follows:
Theorem 4. there are infinite many pure DFO-algebras.
Theorem 6. Let<X_1; *?_1, 0_1>be a BCK-algebra satisfying 1<|x_1|=n<_sS_0~s,
and <X_2; *_2, 0_2>be any proper BCI-algebra having theproperty of discrete sub-al-
gebra and satisfying that B(X2) is a finite set. If<X; *, 0>is the product algebra of
<X_1; *_1, 0_1>and<X_2; *_2, 0_2>, then<X; *, 0>is of pure DFO.
Theorem 7. The property having DFO is an isomorphism invariant. Theproperty hav-
ing pure DFO is also an isomorphism invariant.
出处
《纯粹数学与应用数学》
CSCD
1990年第2期13-20,共8页
Pure and Applied Mathematics