期刊文献+

一种时间序列动态聚类的算法 被引量:8

Dynamic clustering algorithm for time series
下载PDF
导出
摘要 针对时间序列传统静态聚类问题,提出了对时间序列进行动态聚类的方法。该方法首先提取时间序列的关键点集合,根据改进的FCM算法找到动态特征明显的时间序列,再利用提出的动态聚类算法确定此类时间序列在不同时间段的所属类别,在改进的FCM算法中采用兰氏距离可以使其对奇异值不敏感。实验结果反映出动态特征明显的时间序列类别随时间演化的特性,表明了方法的可行性和有效性。与已有算法相比,该方法揭示了时间序列的部分动态特征。该方法还可以运用于研究数据挖掘的其他问题。 This paper proposed a dynamic clustering algorithm for time series aiming at solving the shortcoming of traditional static clustering.Firstly,the method extracted the key point set of each time series,and then obtained the dynamic time series by using improved FCM algorithm.At last,detected the cluster of dynamic time series which belonged to each time segment based on the dynamic clustering algorithm.The adoption of L-W distance in FCM algorithm could avoid the shortcoming of sensitivity to singular value.The experimental results obtained by the proposal reflect the evolutional property that the clusters of the dynamic time series change over time,and show the validity and the feasibility of the method.Compared with existed algorithms,the proposed algorithm indicates the dynamic characteristic of time series when clustering them.This algorithm can also be applied to other problems in data mining.
出处 《计算机应用研究》 CSCD 北大核心 2012年第10期3677-3680,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(10771092)
关键词 时间序列 关键点 兰氏距离 模糊聚类算法 动态聚类 time series key points L-W distance FCM algorithm dynamic clustering
  • 相关文献

参考文献16

  • 1FU T. A review on time series data mining[ J]. Engineering Appli- cations of Artificial Intelligence ,2011,24 ( 1 ) : 164-181. 被引量:1
  • 2杨一鸣,潘嵘,潘嘉林,杨强,李磊.时间序列分类问题的算法比较[J].计算机学报,2007,30(8):1259-1266. 被引量:40
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1069
  • 4潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258. 被引量:41
  • 5TAN P, STEINBACH M, KUNMAR V. Introduction to data mining [M]. 范明,范宏建,等译.北京:人民邮电出版社,2006:43-344. 被引量:1
  • 6D URSO P, MAHARAJ E A. Autocorrelation-based fuzzy clustering of time series [ J ]. Fuzzy Sets and Systems, 2009, 160 (24) : 3565-3589. 被引量:1
  • 7MAHARAJ E A, D URSO P. Fuzzy clustering of time series in the frequency domain[J], information Sciences,2011,181 (7) :1187- 1211. 被引量:1
  • 8MAHARAJ E A, D URSO P. A coherence-based approach for the pattern recognition of time series [ J ]. Physica A, 2010,389 ( 17 ) : 3516-3537. 被引量:1
  • 9IOANNOU A, FOKIANOS K J, PROMPONAS V. Spectral density ratio based on clustering methods for the binary segmentation of pro- tein sequences: a comparative study [ J]. Biosystems, 2011,100 (2) : 132-143. 被引量:1
  • 10MAHARAJ E A, D URSO P, GALGEDERA D U A. Wavelets- based fuzzy clustering of time series[J]. Journal of Classification, 2010,27(2) : 231-275. 被引量:1

二级参考文献43

  • 1Jia-WeiHan,JianPei,Xi-FengYan.From Sequential Pattern Mining to Structured Pattern Mining: A Pattern-Growth Approach[J].Journal of Computer Science & Technology,2004,19(3):257-279. 被引量:18
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3Fiedler M. Algebraic Connectivity of Graphs. Czechoslovak Mathe-matical Journal, 1973, 23 (98) : 298-305. 被引量:1
  • 4Hendrickson B, Leland R. An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations. SIAM Journal on Sci-entific Computing, 1995, 16(2) : 452-469. 被引量:1
  • 5Hagen L, Kahng A B. New Spectral Methods for Ratio Cut Partitio-ning and Clustering. IEEE Trans on Computer-Aided Design, 1992, 11(9) : 1074-1085. 被引量:1
  • 6Dhillon Spectral national (KDD) I S. Co-Clustering Documents and Words Using Bipartite Graph Partitioning// Proc of the 7th ACM SIGKDD Inter-Conference on Knowledge Discovery and Data Mining San Francisco, USA, 2001 : 269-274. 被引量:1
  • 7Ding C, He Xiaofeng, Zha Hongyuan, et al. Unsupervised Learn-ing: Self-Aggregation in Scaled Principal Component Space//Proc of the 6th European Conference on Principles of Data Mining and Knowledge Discovery. Helsinki, Finland, 2002: 112-124. 被引量:1
  • 8Shi Jiaobo, Malik J. Normalized Cuts and Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 888-905. 被引量:1
  • 9Ng A Y, Jordan M I, Weiss Y. On Spectral Clustering: Analysis and an Algorithm// Dietterieh T, Beeker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA : MIT Press, 2002, XIV : 849-856. 被引量:1
  • 10Fowlkes C, Belongie S, Chung F, et al. Spectral Grouping Using the Nystrom Method. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (2) : 214-225. 被引量:1

共引文献1171

同被引文献82

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部