期刊文献+

基于全局纹理和抽样推断的自适应阴影检测算法 被引量:2

Adaptive shadow detection based on global texture and sampling deduction
原文传递
导出
摘要 为了提高不同光线环境下阴影检测的准确度和稳定性,提出了一种自适应的阴影检测算法。设计了一种阴影检测器,利用候选前景中像素YUV分量变化比率判别阴影像素,其检测阈值由阈值估计器得到。阈值估计器利用全局纹理和抽样推断的方法统计计算出当前光线环境下所需的阈值。整个阴影检测过程不需要人工干预,适应于各种复杂动态的场景。对代表不同光线条件的标准测试视频的检测实验表明,本文算法能够自适应地检测得到各目标阴影区域,具有较好的稳定性和实时性,综合检测指标达到94%以上。 In order to improve the accuracy and stability of the shadow detection under di{ferent lighting conditions,an adaptive shadow detection algorithm is proposed. A shadow detector is designed to identify shadow pixds which use the change ratios of YUV components as conditions. The detection thresholds are calculated by a threshold estimator. Under different lighting conditions, the estimator uses global tex- ture and sampling deduction methods to statistically calculate the needed thresholds. The whole detecting process requires no manual intervention and can adapt to any dynamic and complex scene. Experiments on standard test videos show that this algorithm has good stability and real-time performance and can a- daptively detect the shadow area of videos under different lighting conditions; The average comprehensive index of the proposed algorithm can reach more than 94%.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第11期2174-2179,共6页 Journal of Optoelectronics·Laser
关键词 阴影检测 YUV色彩空间 边缘检测 全局纹理 抽样推断 自适应阈值 shadow detection YUV color space edge detectiom global texture; sampling deduction a daptive threshold
  • 相关文献

参考文献17

  • 1Dongya C, Changmao Z, Shoujun W, et al. Dynamio background reconstruction in traffic surveillance systems[A].Proc. of the 2011 International Symposium on Computer Science and Society (ISCCS)[C]. 2011,248-250. 被引量:1
  • 2白向峰,李艾华,李喜来,赵静茹,赵瑞星.基于颜色和梯度差估计器的运动阴影检测[J].光电子.激光,2011,22(9):1390-1394. 被引量:9
  • 3沈垣,李舜酩,柏方超,等.基于颜色和梯度差估计器的运动阴影检测[J].光电子·激光,2010,21(1):74-77. 被引量:1
  • 4Sanin A, Sanderson C, Lovell B C. Shadow detection: a survey and comparative evaluation of recent methods [J]. Pattern Recognition,20]2,45(4) : 1684-1695. 被引量:1
  • 5Hsieh J W,Hu W F,Ohang C J,et al. Shadow elimination for effective moving object detection by gaussian shadow modeling[J]. Image and Vision Computing, 2003,21 (6): 505-516. 被引量:1
  • 6Oucchiara R, Grana C, Piccardi M, et al. Detecting moving objects,ghosts, and shadows in video streams[J]. I EEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(10) : 1337-1342. 被引量:1
  • 7Huang J B,Ohen C S. Moving cast shadow detection using physics-based features[A]. Pro. of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, 2310-2317. 被引量:1
  • 8Leone A, Distante O. Shadow detection for moving objectsbased on texture analysis[J]. Pattern Recognition, 2007, 40(4): 1222-1233. 被引量:1
  • 9Sanin A, Sanderson C, Lovell B C. Improved shadow removal for robust person tracking in surveillance scenarios [A]. Proc. of the 20th International Conference on Pattern Recognition[C]. 2010, ]41-144. 被引量:1
  • 10Porikli F,Thornton J. Shadow flow:a recursive method to learn moving cast shadows[A]. Proc. of the lOth IEEE International Conference on Computer Vision [C]. 2005, 891-898. 被引量:1

二级参考文献29

共引文献30

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部