摘要
设H为无限维的复Hilbert空间,J(H)是H上全体对称算子构成的Jordan代数,Φ:J(H)→J(H)为双射且Φ(I)=I.证明下列条件等价:(1)Φ(ABA)=Φ(A)Φ(B)Φ(A),A,B∈J(H);(2)Φ(1/2(AB+BA))=1/2Φ(A)Φ(B)+1/2Φ(B)Φ(A),A,B∈J(H);(3)Φ(ABC+CBA)=Φ(A)Φ(B)Φ(C)+Φ(C)Φ(B)Φ(A),A,B,C∈J(H);(4)Φ(1/2(ABC+CBA))=1/2Φ(A)Φ(B)Φ(C)+1/2Φ(C)Φ(B)Φ(A),A,B,C∈J(H);(5)Φ是J(H)上的Jordan环同构;(6)存在有界可逆的线性或共轭线性算子A:H→H,A^t=A^(-1),使得Φ(X)=AXA^t,X∈J(H).得到了J(H)上Jordan环同构的新刻画.
Let H be an infinite dimensional complex Hilbert space and I(H) bethe Jordan algebra of all symmetric operators in B(H).We show that if bijectivemapsΦ:I(H)→I(H) withΦ(I) = I,then the following conditions are equivalent:(1)Φ(ABA) =Φ(A)Φ(B)Φ(A),A,B∈I(H);(2)Φ((1/2)(AB + BA)) =(1/2)Φ(A)Φ(B) +(1/2)(B)Φ(A),A,B∈I(H);(3)Φ(ABC + CBA) =Φ(A)Φ(B)Φ(C) +Φ(C)Φ(B)Φ(A),A,B,C∈I(H);(4)Φ((1/2)(ABC + CBA)) =(1/2)Φ(A)Φ(B)Φ(C) +(1/2)Φ(C)Φ(B)Φ(A),A,B,C∈I(H);(5)Φis a Jordan ring isomorphism on I(H);(6) there exists a bounded invertible linear or conjugate linear operator A:H→Hwith A^t = A^(-1) such thatΦ(X) = AX A^t for every X∈I(H).New characterizationsof Jordan ring isomorphism on I(H) were got.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2012年第6期991-1000,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11001194)
山西省强校工程人才支持计划资助项目(TYAL)