期刊文献+

对称算子空间上的Jordan环同构 被引量:1

Jordan Ring Isomorphism on the Space of Symmetric Operators
原文传递
导出
摘要 设H为无限维的复Hilbert空间,J(H)是H上全体对称算子构成的Jordan代数,Φ:J(H)→J(H)为双射且Φ(I)=I.证明下列条件等价:(1)Φ(ABA)=Φ(A)Φ(B)Φ(A),A,B∈J(H);(2)Φ(1/2(AB+BA))=1/2Φ(A)Φ(B)+1/2Φ(B)Φ(A),A,B∈J(H);(3)Φ(ABC+CBA)=Φ(A)Φ(B)Φ(C)+Φ(C)Φ(B)Φ(A),A,B,C∈J(H);(4)Φ(1/2(ABC+CBA))=1/2Φ(A)Φ(B)Φ(C)+1/2Φ(C)Φ(B)Φ(A),A,B,C∈J(H);(5)Φ是J(H)上的Jordan环同构;(6)存在有界可逆的线性或共轭线性算子A:H→H,A^t=A^(-1),使得Φ(X)=AXA^t,X∈J(H).得到了J(H)上Jordan环同构的新刻画. Let H be an infinite dimensional complex Hilbert space and I(H) bethe Jordan algebra of all symmetric operators in B(H).We show that if bijectivemapsΦ:I(H)→I(H) withΦ(I) = I,then the following conditions are equivalent:(1)Φ(ABA) =Φ(A)Φ(B)Φ(A),A,B∈I(H);(2)Φ((1/2)(AB + BA)) =(1/2)Φ(A)Φ(B) +(1/2)(B)Φ(A),A,B∈I(H);(3)Φ(ABC + CBA) =Φ(A)Φ(B)Φ(C) +Φ(C)Φ(B)Φ(A),A,B,C∈I(H);(4)Φ((1/2)(ABC + CBA)) =(1/2)Φ(A)Φ(B)Φ(C) +(1/2)Φ(C)Φ(B)Φ(A),A,B,C∈I(H);(5)Φis a Jordan ring isomorphism on I(H);(6) there exists a bounded invertible linear or conjugate linear operator A:H→Hwith A^t = A^(-1) such thatΦ(X) = AX A^t for every X∈I(H).New characterizationsof Jordan ring isomorphism on I(H) were got.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第6期991-1000,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11001194) 山西省强校工程人才支持计划资助项目(TYAL)
关键词 对称算子 就范正交基 Jordan环同构 symmetric operators orthonormal basis Jordan ring somorphism
  • 相关文献

参考文献9

  • 1Matindale III W. S., When are multiplicative mappings additive? Proc. Amer. Math. Soc., 1969, 20: 695- 698. 被引量:1
  • 2Semrl P., Isomorphisms of standard operator algebras, Proc. Ane. Math. Soc., 1995, 123: 1851-1855. 被引量:1
  • 3i v Hakeda J., Additivity of *-semigroup isomorphisms among *-algebra, Bull. London. Math. Soc., 1986, 18: 51-56. 被引量:1
  • 4Molnr L., On isomorphisms of standard operator algebras, Stud. Math., 2000: 295-302. 被引量:1
  • 5Molnr L., Jordan maps on standard operator algebras, Functional Equations-Results and Advances, 2001: 305-320. 被引量:1
  • 6Moln$r L., On isomorphisms of standard operator algebras, Studia. Math., 2000, 142: 295-302. 被引量:1
  • 7Lu F. Y., Additivity of Jordan maps on standard operator algebras, Lin. Alg. Appl., 2002, 357: 123-131. 被引量:1
  • 8An R. L., Hou J. C., Additivity of Jordan multiplicative maps on Jordan Operator algebras, Taiwan. J. Math., 2006, 10(1): 45-64. 被引量:1
  • 9An R. L., Hou J. C., Zhao L. K., Adjacency preserving maps on the space of symmetric operators, Lin. Alg. Appl., 2005, 405: 311-324. 被引量:1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部