期刊文献+

PSO-RBF神经网络在电机保护中的应用 被引量:2

Application of motor based on PSO and RBF neural network
下载PDF
导出
摘要 针对电机保护只在被测参数达到或者超过设定动作阈值才动作,缺乏预测控制能力,设计了一种基于粒子群的径向神经网络。利用小波变换的时频分解能力、优异的奇异检测能力进行故障特征分量的提取;用粒子群算法和径向神经网络配合优化权重,从而使网络收敛快,训练时间短。通过电动机故障进行仿真实验,结果表明PSO-RBF神经网络实现了对故障的识别。 Because the motor can’t take action until the measured parameters meet or exceed the threshold, which lack of prediction control, a Radial Basis Function(RBF) Neural Network is designed based on Particle Swarm Optimization(PSO). Using strong time-frequency decomposition capabilities and outstanding singularity detection capability of wavelet transform, the eigenvector of fault can be gained;the connection weight is optimized by RBF Neural Network with PSO, which makes the Neural Network convergence faster and training shorter. According to simulation of fault by motor, fault is recognized by PSO-RBF Neural Network.
出处 《计算机工程与应用》 CSCD 2012年第31期216-219,共4页 Computer Engineering and Applications
基金 浙江省重大科技专项(No.2007C11072) 国家重大专项"极大规模集成电路制造装备及成套工艺"子课题(No.2009ZX02011-02)
关键词 径向神经网络 小波变换 故障诊断 粒子群算法 Radial Basis Function(RBF) Neural Network wavelet transform fault diagnosis Particle Swarm Optimization(PSO)
  • 相关文献

参考文献12

二级参考文献54

共引文献188

同被引文献23

  • 1崔慧,吴长春.热油管道非稳态工况传热与流动的耦合计算模型[J].石油大学学报(自然科学版),2005,29(3):101-105. 被引量:16
  • 2吴明,王金华,刘建锋,邱姝娟.长输热油管道运行方案的优化[J].辽宁石油化工大学学报,2006,26(1):63-65. 被引量:26
  • 3张顶学,关治洪,刘新芝.基于PSO的RBF神经网络学习算法及其应用[J].计算机工程与应用,2006,42(20):13-15. 被引量:44
  • 4Verrelli C M, Savoia A, Mengoni M.On-line identification of winding resistances and load torque in induction machines[J].IEEE Transactions on Control Systems Tech- nology,2014,22(4) : 1629-1637. 被引量:1
  • 5Salmasi F R,Najafabadi T A.An adaptive observer with online rotor and stator resistance estimation for induction motors with one phase current sensor[J].IEEE Transactions on Energy Conversion,2011,26(3) :959-966. 被引量:1
  • 6Zerikat M,Chekroun S,Mechernene A.A robust MRAS- sensorless scheme based rotor and stator resistances esti- mation of a direct vector controlled induction motor drive[C]//2011 16th International Conference on Methods and Models in Automation and Robotics(MMAR), 2011 : 151-156. 被引量:1
  • 7Maiti S, Verma V, Chakraborty C, et al.An adaptive speed sensorless induction motor drive with artificial neural net- work for stability enhancement[J].IEEE Transactions on Industrial Informatics,2012,8(4) :757-766. 被引量:1
  • 8Kouchih D,Tadjine M,Boucherit M S.Adaptive obser- vation of stator flux and resistance for speed sensorless DTC controlled IM drives[C]//14th International Con- ference on Sciences and Techniques of Automatic Con- trol & Computer Engineering(STA), 2013 : 493-498. 被引量:1
  • 9Han Honggui,Wu Xiaolong,Qiao Junfei.Nonlinear sys- tems modeling based on self-organizing fuzzy neural network with adaptive computation algorithm[J].IEEE Transactions on Cybernetics,2014,44(4):554-564. 被引量:1
  • 10贺昱曜,张慧档.基于PSO和RBF神经网络的水声信号建模与预测[J].计算机工程,2008,34(23):208-209. 被引量:2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部