期刊文献+

基于2D-WLDH的最大熵阈值分割算法

Maximum Entropy Threshold Segmentation Algorithm Based on 2D-WLDH
下载PDF
导出
摘要 在传统二维最大熵图像阈值分割算法中,二维直方图主对角区域的概率和近似为1的假设不够合理,且算法耗时较多。为此,提出一种新的最大熵分割算法。根据灰度级和韦伯局部描述子(WLD)建立二维WLD直方图(2D-WLDH),将其用于最大熵的阈值分割,并设计快速递推算法,以提高运行速度。实验结果表明,该算法的运行时间较少,分割效果较好。 The traditional 2D maximum entropy threshold segmentation algorithm has an inadequately reasonable assumption that the sum of probabilities of main-diagonal distinct is approximately one in the 2D histogram and the algorithm is time-consuming.Aiming at this problem,a new maximum entropy segmentation algorithm is proposed in this paper.Based on gray level and Weber Local Descriptors(WLD),it constructs a 2D WLD Histogram(2D-WLDH),and applies it to the maximum entropy threshold segmentation.In order to further improve the speed of the proposed algorithm,the fast recursive algorithm is deduced.Experimental results show that,compared with existing corresponding algorithms,the proposed algorithm can reduce the running time and achieve better segmentation quality.
作者 邹小林
出处 《计算机工程》 CAS CSCD 2012年第19期199-202,共4页 Computer Engineering
关键词 图像分割 阈值选取 韦伯局部描述子 最大熵 二维直方图 image segmentation threshold selection Weber Local Descriptor(WLD) maximum entropy 2D histogram
  • 相关文献

参考文献9

二级参考文献35

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部