期刊文献+

多维混沌系统的全局指数吸引集及模拟 被引量:3

Globally exponentially attractive set of a multi-dimensional system and simulation
下载PDF
导出
摘要 混沌系统的全局指数吸引集在混沌的控制和同步之中起着非常重要的作用.给出了一个五维混沌系统的模型,然后借助一个适当的Lyapunov函数和最优化理论,研究了这个混沌系统的全局指数吸引集,得到了它的五维椭球全局指数吸引集.最后,通过了计算机模拟,数值模拟验证了计算理论的可行性. This paper studied globally exponentially attractive set of a chaotic system.The globally exponentially attractive set of this system is investigated via constructing a Lyapunov function and optimation theory. A five dimensional ellipsoidal globally exponentially attractive set is derived, and numerical simulations are presented to show the effectiveness of the proposed scheme.
作者 袁红 张付臣
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期518-521,共4页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(10901076 11271175)
关键词 全局指数吸引集 混沌系统 数值仿真 globally exponentially attractive set chaotic system numerical simulations
  • 相关文献

参考文献9

  • 1Cheng R, Lti J H. Dynamics of the Lorenz System Family: Analysis, Control and Synchronization[-M]. Beijing: Science Press, 2003. 被引量:1
  • 2Leonov G, Bunin A, Koksch N. Attractor localization o{ the Lorenz system [J]. ZAMM,1987, 6"/.. 649-656. 被引量:1
  • 3Qin W X, Chen G R. On the boundedness of solutions of the Chen systemfJ]. Journal of Mathematical Analysis and Ap- plications, 2007, 329: 445-451. 被引量:1
  • 4LiDM, LuJ A, Wu XQ, et al. Estimating the bounds for the Lorenz family of chaotic systems[J]. Chaos Solitons Fractals, 2005, 23(2): 529-534. 被引量:1
  • 5Li D M, Lu J A, Wu and positively in en system [ J ]. 1290-1296 variant X Q. Esti set for the Chaos Solitons mating the ultimate bound hyperchaotic Lorenz-Hak- Fraetals, 2009, 39:. 被引量:1
  • 6Wang P, Li D M, Hu Q L. Bounds of the hyper-chaotic Lorenz-Sten{lo system[J]. Communications in Nonlinear Sci ence and Numerical Simulation, 2010, 15 : 2514-2520. 被引量:1
  • 7ZhangFC, MuCL, LiXW. On the boundness of some so- lutions of the LiJ system[J2. International Journal of Bifurca- tion and Chaos, 2012, 22 (1) :1250015(1 5). 被引量:1
  • 8廖晓昕,罗海庚,傅予力,谢胜利,郁培.论Lorenz系统族的全局指数吸引集和正向不变集[J].中国科学(E辑),2007,37(6):757-769. 被引量:24
  • 9舒永录,张付臣,杨洪亮.一个新的多维超混沌系统及其性质研究[J].四川大学学报(自然科学版),2011,48(4):857-864. 被引量:19

二级参考文献14

共引文献38

同被引文献37

  • 1LIAO Xiaoxin 1, 2, 3 , FU Yuli 4 & XIE Shengli 4 1. Department of Control Science & Control Engineering, Huazhong University of Science & Technology, Wuhan 430074, China,2. School of Automation, Wuhan University of Science & Technology, Wuhan 430070, China,3. School of Information, Central South University of Economy, Politics and Law, Wuhan 430064, China,4. School of Electronics & Information Engineering, South China University of Technology, Guangzhou 510640, China Correspondence should be addressed to Liao Xiaoxin (email: xiaoxin_liao@hotmail.com).On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization[J].Science in China(Series F),2005,48(3):304-321. 被引量:23
  • 2Li Damei, Lu Jun-an, Wu Xiaoqun, et al.Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system[J].Journal of Mathematical Analysis and Applications, 2006,323 (2) : 844-853. 被引量:1
  • 3Liao Xiaoxin.On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization[J].Sci China Ser E,2004, 34:1404-1419. 被引量:1
  • 4Leonov G, Bunin A, Koksch N.Attractor localization of the Lorenz system[J].ZAMM, 1987,67:649-656. 被引量:1
  • 5陈关荣,吕金虎.Lorenz系统族的动力学分析、控制和同步[M].北京:科学出版社,2003. 被引量:2
  • 6Wu Zhinan, Zhang Fuchen, Li Xiaowu.Localization of compact invariant sets of a 4D system and its application in chaos[J]. International Journal of Research and Reviews in Applied Sciences, 2012,12 ( 1 ) : 1-9. 被引量:1
  • 7Sun Yeong-Jeu.Solution bounds of generalized Lorenz chaotic systems[J].Chaos,Solitons and Fractals,2009,40:691-696. 被引量:1
  • 8Ghosh D,Chowdhury A R,Saha P.Bifurcation continuation, chaos and chaos control in nonlinear Bloch system[J].Communications in Nonlinear Science and Numerical Simulation,2008,13: 1461-1471. 被引量:1
  • 9Ucar A, Lonngren K E, Er-WeiBa.Synchronization of chaotic behavior in nonlinear Bloch equations[J].Physics Letters A, 2003,314:96-101. 被引量:1
  • 10Chuang Chun-Fu, Sun Yeong-Jeu, Wang Wen-June.Invariant set, solution bounds, and linear synchronization control for Bloch chaotic systems[J].Journal of the Franklin Institute, 2012,349 : 2770-2782. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部